Learn more

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
24.1-a7 24.1-a Q(3)\Q(\sqrt{3}) 233 2^{3} \cdot 3 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.3252798682.325279868 0.671250479 30656171549 \frac{3065617154}{9} [a+1 \bigl[a + 1 , 1 1 , 0 0 , 385a671 385 a - 671 , 5582a9681] 5582 a - 9681\bigr] y2+(a+1)xy=x3+x2+(385a671)x+5582a9681{y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(385a-671\right){x}+5582a-9681
24.1-b7 24.1-b Q(3)\Q(\sqrt{3}) 233 2^{3} \cdot 3 0 Z/8Z\Z/8\Z SU(2)\mathrm{SU}(2) 11 22.7340340722.73403407 0.820343793 30656171549 \frac{3065617154}{9} [a+1 \bigl[a + 1 , a -a , a+1 a + 1 , 383a674 383 a - 674 , 5198a+9008] -5198 a + 9008\bigr] y2+(a+1)xy+(a+1)y=x3ax2+(383a674)x5198a+9008{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(383a-674\right){x}-5198a+9008
144.1-a7 144.1-a Q(3)\Q(\sqrt{3}) 2432 2^{4} \cdot 3^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 4.1977371584.197737158 1.211782339 30656171549 \frac{3065617154}{9} [a+1 \bigl[a + 1 , a1 -a - 1 , a+1 a + 1 , a290 -a - 290 , 1040a1] -1040 a - 1\bigr] y2+(a+1)xy+(a+1)y=x3+(a1)x2+(a290)x1040a1{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a-290\right){x}-1040a-1
144.1-c7 144.1-c Q(3)\Q(\sqrt{3}) 2432 2^{4} \cdot 3^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 4.1977371584.197737158 1.211782339 30656171549 \frac{3065617154}{9} [a+1 \bigl[a + 1 , 1 -1 , 0 0 , 16142a27960 16142 a - 27960 , 1464590a2536744] 1464590 a - 2536744\bigr] y2+(a+1)xy=x3x2+(16142a27960)x+1464590a2536744{y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(16142a-27960\right){x}+1464590a-2536744
768.1-e7 768.1-e Q(3)\Q(\sqrt{3}) 283 2^{8} \cdot 3 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 11.3670170311.36701703 1.640687586 30656171549 \frac{3065617154}{9} [0 \bigl[0 , a1 a - 1 , 0 0 , 1538a2689 -1538 a - 2689 , 43117a+74761] 43117 a + 74761\bigr] y2=x3+(a1)x2+(1538a2689)x+43117a+74761{y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-1538a-2689\right){x}+43117a+74761
768.1-l7 768.1-l Q(3)\Q(\sqrt{3}) 283 2^{8} \cdot 3 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.0792738641.079273864 1.1626399341.162639934 2.897852395 30656171549 \frac{3065617154}{9} [0 \bigl[0 , a+1 -a + 1 , 0 0 , 1538a2689 -1538 a - 2689 , 43117a74761] -43117 a - 74761\bigr] y2=x3+(a+1)x2+(1538a2689)x43117a74761{y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-1538a-2689\right){x}-43117a-74761
2304.1-q7 2304.1-q Q(3)\Q(\sqrt{3}) 2832 2^{8} \cdot 3^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 2.7861812582.786181258 2.0988685792.098868579 3.376245242 30656171549 \frac{3065617154}{9} [0 \bigl[0 , a -a , 0 0 , 1152 -1152 , 8316a] -8316 a\bigr] y2=x3ax21152x8316a{y}^2={x}^{3}-a{x}^{2}-1152{x}-8316a
2304.1-bb7 2304.1-bb Q(3)\Q(\sqrt{3}) 2832 2^{8} \cdot 3^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 2.7861812582.786181258 2.0988685792.098868579 3.376245242 30656171549 \frac{3065617154}{9} [0 \bigl[0 , a a , 0 0 , 1152 -1152 , 8316a] 8316 a\bigr] y2=x3+ax21152x+8316a{y}^2={x}^{3}+a{x}^{2}-1152{x}+8316a
3072.1-e7 3072.1-e Q(3)\Q(\sqrt{3}) 2103 2^{10} \cdot 3 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.5705785282.570578528 2.968248410 30656171549 \frac{3065617154}{9} [0 \bigl[0 , a+1 -a + 1 , 0 0 , 768a1536 768 a - 1536 , 16632a+27720] -16632 a + 27720\bigr] y2=x3+(a+1)x2+(768a1536)x16632a+27720{y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(768a-1536\right){x}-16632a+27720
3072.1-f7 3072.1-f Q(3)\Q(\sqrt{3}) 2103 2^{10} \cdot 3 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.9298719240.929871924 2.5705785282.570578528 2.760090861 30656171549 \frac{3065617154}{9} [0 \bigl[0 , a1 -a - 1 , 0 0 , 768a1536 -768 a - 1536 , 16632a27720] -16632 a - 27720\bigr] y2=x3+(a1)x2+(768a1536)x16632a27720{y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-768a-1536\right){x}-16632a-27720
3072.1-bt7 3072.1-bt Q(3)\Q(\sqrt{3}) 2103 2^{10} \cdot 3 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.5705785282.570578528 2.968248410 30656171549 \frac{3065617154}{9} [0 \bigl[0 , a+1 a + 1 , 0 0 , 768a1536 -768 a - 1536 , 16632a+27720] 16632 a + 27720\bigr] y2=x3+(a+1)x2+(768a1536)x+16632a+27720{y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-768a-1536\right){x}+16632a+27720
3072.1-cc7 3072.1-cc Q(3)\Q(\sqrt{3}) 2103 2^{10} \cdot 3 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.9298719240.929871924 2.5705785282.570578528 2.760090861 30656171549 \frac{3065617154}{9} [0 \bigl[0 , a1 a - 1 , 0 0 , 768a1536 768 a - 1536 , 16632a27720] 16632 a - 27720\bigr] y2=x3+(a1)x2+(768a1536)x+16632a27720{y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(768a-1536\right){x}+16632a-27720
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.