Properties

Base field \(\Q(\sqrt{3}) \)
Label 2.2.12.1-144.1-a
Conductor 144.1
Rank \( 0 \)

Related objects

Learn more

Base field \(\Q(\sqrt{3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 3 \); class number \(1\).

Elliptic curves in class 144.1-a over \(\Q(\sqrt{3}) \)

Isogeny class 144.1-a contains 8 curves linked by isogenies of degrees dividing 16.

Curve label Weierstrass Coefficients
144.1-a1 \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( 209 a - 410\) , \( 2494 a - 4159\bigr] \)
144.1-a2 \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a + 10\) , \( -68 a - 1\bigr] \)
144.1-a3 \( \bigl[0\) , \( a\) , \( 0\) , \( 8 a + 15\) , \( 25 a + 43\bigr] \)
144.1-a4 \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 5\) , \( a - 1\bigr] \)
144.1-a5 \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 20\) , \( -14 a - 1\bigr] \)
144.1-a6 \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 50\) , \( 82 a - 1\bigr] \)
144.1-a7 \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 290\) , \( -1040 a - 1\bigr] \)
144.1-a8 \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -211 a - 410\) , \( 2494 a + 4157\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrrrrrr} 1 & 16 & 8 & 4 & 8 & 2 & 16 & 4 \\ 16 & 1 & 8 & 4 & 2 & 8 & 4 & 16 \\ 8 & 8 & 1 & 2 & 4 & 4 & 8 & 8 \\ 4 & 4 & 2 & 1 & 2 & 2 & 4 & 4 \\ 8 & 2 & 4 & 2 & 1 & 4 & 2 & 8 \\ 2 & 8 & 4 & 2 & 4 & 1 & 8 & 2 \\ 16 & 4 & 8 & 4 & 2 & 8 & 1 & 16 \\ 4 & 16 & 8 & 4 & 8 & 2 & 16 & 1 \end{array}\right)\)

Isogeny graph