Elliptic curves in class 144.1-a over \(\Q(\sqrt{3}) \)
Isogeny class 144.1-a contains
8 curves linked by isogenies of
degrees dividing 16.
Curve label |
Weierstrass Coefficients |
144.1-a1
| \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( 209 a - 410\) , \( 2494 a - 4159\bigr] \)
|
144.1-a2
| \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a + 10\) , \( -68 a - 1\bigr] \)
|
144.1-a3
| \( \bigl[0\) , \( a\) , \( 0\) , \( 8 a + 15\) , \( 25 a + 43\bigr] \)
|
144.1-a4
| \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 5\) , \( a - 1\bigr] \)
|
144.1-a5
| \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 20\) , \( -14 a - 1\bigr] \)
|
144.1-a6
| \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 50\) , \( 82 a - 1\bigr] \)
|
144.1-a7
| \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 290\) , \( -1040 a - 1\bigr] \)
|
144.1-a8
| \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -211 a - 410\) , \( 2494 a + 4157\bigr] \)
|
Rank: \( 0 \)
\(\left(\begin{array}{rrrrrrrr}
1 & 16 & 8 & 4 & 8 & 2 & 16 & 4 \\
16 & 1 & 8 & 4 & 2 & 8 & 4 & 16 \\
8 & 8 & 1 & 2 & 4 & 4 & 8 & 8 \\
4 & 4 & 2 & 1 & 2 & 2 & 4 & 4 \\
8 & 2 & 4 & 2 & 1 & 4 & 2 & 8 \\
2 & 8 & 4 & 2 & 4 & 1 & 8 & 2 \\
16 & 4 & 8 & 4 & 2 & 8 & 1 & 16 \\
4 & 16 & 8 & 4 & 8 & 2 & 16 & 1
\end{array}\right)\)