Learn more

Refine search


Results (14 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1728.2-a3 1728.2-a \(\Q(\sqrt{-2}) \) \( 2^{6} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.798543047$ $0.561726762$ 2.223167090 \( \frac{2514081593672}{3486784401} a - \frac{1943385699640}{3486784401} \) \( \bigl[a\) , \( a\) , \( 0\) , \( 7 a - 128\) , \( 73 a + 816\bigr] \) ${y}^2+a{x}{y}={x}^{3}+a{x}^{2}+\left(7a-128\right){x}+73a+816$
1728.2-b3 1728.2-b \(\Q(\sqrt{-2}) \) \( 2^{6} \cdot 3^{3} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.561726762$ 1.986004013 \( \frac{2514081593672}{3486784401} a - \frac{1943385699640}{3486784401} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 7 a - 128\) , \( -73 a - 816\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(7a-128\right){x}-73a-816$
1728.3-a3 1728.3-a \(\Q(\sqrt{-2}) \) \( 2^{6} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.798543047$ $0.561726762$ 2.223167090 \( \frac{2514081593672}{3486784401} a - \frac{1943385699640}{3486784401} \) \( \bigl[a\) , \( -a\) , \( a\) , \( -62 a + 93\) , \( -416 a - 651\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-62a+93\right){x}-416a-651$
1728.3-b3 1728.3-b \(\Q(\sqrt{-2}) \) \( 2^{6} \cdot 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.561726762$ 1.986004013 \( \frac{2514081593672}{3486784401} a - \frac{1943385699640}{3486784401} \) \( \bigl[a\) , \( a + 1\) , \( a\) , \( -62 a + 93\) , \( 416 a + 652\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-62a+93\right){x}+416a+652$
2304.2-d3 2304.2-d \(\Q(\sqrt{-2}) \) \( 2^{8} \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.486469646$ 1.719929928 \( \frac{2514081593672}{3486784401} a - \frac{1943385699640}{3486784401} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 110 a + 69\) , \( 433 a + 1042\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(110a+69\right){x}+433a+1042$
2304.2-f3 2304.2-f \(\Q(\sqrt{-2}) \) \( 2^{8} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.486469646$ 1.719929928 \( \frac{2514081593672}{3486784401} a - \frac{1943385699640}{3486784401} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 110 a + 69\) , \( -433 a - 1042\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(110a+69\right){x}-433a-1042$
9216.2-b3 9216.2-b \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.666583769$ $0.343985985$ 2.756621001 \( \frac{2514081593672}{3486784401} a - \frac{1943385699640}{3486784401} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -220 a - 139\) , \( 2304 a - 1593\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-220a-139\right){x}+2304a-1593$
9216.2-z3 9216.2-z \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.112241099$ $0.343985985$ 5.460188802 \( \frac{2514081593672}{3486784401} a - \frac{1943385699640}{3486784401} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -220 a - 139\) , \( -2304 a + 1593\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-220a-139\right){x}-2304a+1593$
20736.3-k3 20736.3-k \(\Q(\sqrt{-2}) \) \( 2^{8} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.500738767$ $0.162156548$ 4.587835145 \( \frac{2514081593672}{3486784401} a - \frac{1943385699640}{3486784401} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 990 a + 627\) , \( 11066 a + 30114\bigr] \) ${y}^2={x}^{3}+\left(990a+627\right){x}+11066a+30114$
20736.3-l3 20736.3-l \(\Q(\sqrt{-2}) \) \( 2^{8} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.500738767$ $0.162156548$ 4.587835145 \( \frac{2514081593672}{3486784401} a - \frac{1943385699640}{3486784401} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 990 a + 627\) , \( -11066 a - 30114\bigr] \) ${y}^2={x}^{3}+\left(990a+627\right){x}-11066a-30114$
27648.2-o3 27648.2-o \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.865702059$ $0.198600401$ 4.192059108 \( \frac{2514081593672}{3486784401} a - \frac{1943385699640}{3486784401} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -58 a + 1019\) , \( 13113 a - 3357\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-58a+1019\right){x}+13113a-3357$
27648.2-bi3 27648.2-bi \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.198600401$ 2.808633811 \( \frac{2514081593672}{3486784401} a - \frac{1943385699640}{3486784401} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -58 a + 1019\) , \( -13113 a + 3357\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-58a+1019\right){x}-13113a+3357$
27648.3-n3 27648.3-n \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $7.462808236$ $0.198600401$ 4.192059108 \( \frac{2514081593672}{3486784401} a - \frac{1943385699640}{3486784401} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 498 a - 741\) , \( 9927 a - 12573\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(498a-741\right){x}+9927a-12573$
27648.3-bh3 27648.3-bh \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.198600401$ 2.808633811 \( \frac{2514081593672}{3486784401} a - \frac{1943385699640}{3486784401} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 498 a - 741\) , \( -9927 a + 12573\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(498a-741\right){x}-9927a+12573$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.