Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
30492.5-k1
30492.5-k
$4$
$4$
\(\Q(\sqrt{-7}) \)
$2$
$[0, 1]$
30492.5
\( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \)
\( 2^{8} \cdot 3^{4} \cdot 7 \cdot 11^{5} \)
$3.12417$
$(a), (-a+1), (-2a+1), (-2a+3), (2a+1), (3)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2$
2B
$1$
\( 2^{6} \)
$0.183593661$
$1.206794125$
5.359469747
\( -\frac{572783983993}{3689532} a - \frac{3616573017143}{4919376} \)
\( \bigl[1\) , \( 1\) , \( a + 1\) , \( -43 a + 110\) , \( -226 a - 161\bigr] \)
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-43a+110\right){x}-226a-161$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.