Learn more

Refine search


Results (6 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1800.2-a4 1800.2-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.222905284$ $1.740793442$ 1.552128233 \( \frac{546718898}{405} \) \( \bigl[i + 1\) , \( -i\) , \( 0\) , \( 54\) , \( -162 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}-i{x}^{2}+54{x}-162i$
16200.2-d4 16200.2-d \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.497536285$ $0.580264480$ 3.475868462 \( \frac{546718898}{405} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i + 486\) , \( -3888 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+486\right){x}-3888i$
18000.2-g4 18000.2-g \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.122110181$ $0.778506494$ 3.494280255 \( \frac{546718898}{405} \) \( \bigl[i + 1\) , \( 1\) , \( 0\) , \( -216 i - 162\) , \( -1782 i - 324\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-216i-162\right){x}-1782i-324$
18000.3-f4 18000.3-f \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.122110181$ $0.778506494$ 3.494280255 \( \frac{546718898}{405} \) \( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( 216 i - 162\) , \( 1782 i - 324\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(216i-162\right){x}+1782i-324$
45000.3-o4 45000.3-o \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{2} \cdot 5^{4} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.348158688$ 2.785269508 \( \frac{546718898}{405} \) \( \bigl[i + 1\) , \( -i\) , \( i + 1\) , \( -i + 1352\) , \( 18898 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(-i+1352\right){x}+18898i$
57600.2-bb4 57600.2-bb \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.870396721$ 3.481586885 \( \frac{546718898}{405} \) \( \bigl[0\) , \( i\) , \( 0\) , \( 216\) , \( 1296 i\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+216{x}+1296i$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.