Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
33800.8-a2
33800.8-a
$2$
$2$
\(\Q(\sqrt{-1}) \)
$2$
$[0, 1]$
33800.8
\( 2^{3} \cdot 5^{2} \cdot 13^{2} \)
\( 2^{4} \cdot 5^{9} \cdot 13^{8} \)
$2.42325$
$(a+1), (2a+1), (-3a-2), (2a+3)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2$
2B
$1$
\( 2^{4} \)
$0.647276450$
$0.578523154$
2.995715314
\( -\frac{6308647328}{4826809} a + \frac{9699305648}{4826809} \)
\( \bigl[i + 1\) , \( -i - 1\) , \( i + 1\) , \( 145 i + 41\) , \( -48 i - 524\bigr] \)
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(145i+41\right){x}-48i-524$
67600.8-h2
67600.8-h
$2$
$2$
\(\Q(\sqrt{-1}) \)
$2$
$[0, 1]$
67600.8
\( 2^{4} \cdot 5^{2} \cdot 13^{2} \)
\( 2^{4} \cdot 5^{3} \cdot 13^{8} \)
$2.88174$
$(a+1), (2a+1), (-3a-2), (2a+3)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2$
2B
$1$
\( 2^{3} \)
$1$
$1.293617100$
2.587234201
\( -\frac{6308647328}{4826809} a + \frac{9699305648}{4826809} \)
\( \bigl[i + 1\) , \( i + 1\) , \( i + 1\) , \( -24 i + 18\) , \( 10 i - 29\bigr] \)
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-24i+18\right){x}+10i-29$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.