Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
10400.3-d5 10400.3-d \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{2} \cdot 13 \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.190165251$ 2.380330502 \( -\frac{246826028856}{66015625} a + \frac{291128921792}{66015625} \) \( \bigl[i + 1\) , \( -1\) , \( i + 1\) , \( -23 i - 38\) , \( 61 i + 96\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-{x}^{2}+\left(-23i-38\right){x}+61i+96$
52000.3-d5 52000.3-d \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.841594023$ $0.532258081$ 3.920813205 \( -\frac{246826028856}{66015625} a + \frac{291128921792}{66015625} \) \( \bigl[i + 1\) , \( 0\) , \( 0\) , \( 218 i + 28\) , \( 512 i + 961\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(218i+28\right){x}+512i+961$
52000.5-b5 52000.5-b \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.621322125$ $0.532258081$ 3.451847214 \( -\frac{246826028856}{66015625} a + \frac{291128921792}{66015625} \) \( \bigl[i + 1\) , \( i + 1\) , \( i + 1\) , \( -88 i + 201\) , \( -755 i - 644\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-88i+201\right){x}-755i-644$
83200.3-c5 83200.3-c \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 5^{2} \cdot 13 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.595082625$ 1.190165251 \( -\frac{246826028856}{66015625} a + \frac{291128921792}{66015625} \) \( \bigl[0\) , \( -i - 1\) , \( 0\) , \( -86 i - 153\) , \( -405 i - 615\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(-86i-153\right){x}-405i-615$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.