Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
9604.3-a2 9604.3-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.980975911$ 1.132733413 \( \frac{189}{512} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 2 a - 3\) , \( 87 a + 76\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(2a-3\right){x}+87a+76$
9604.3-b2 9604.3-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.980975911$ 1.132733413 \( \frac{189}{512} \) \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( 3 a - 2\) , \( -87 a + 163\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(3a-2\right){x}-87a+163$
86436.3-h2 86436.3-h \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.071245209$ $1.498465456$ 4.437866884 \( \frac{189}{512} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( 1\) , \( 39\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+{x}+39$
86436.3-j2 86436.3-j \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{4} \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $0.548686226$ $0.214066493$ 4.882526660 \( \frac{189}{512} \) \( \bigl[a + 1\) , \( 0\) , \( 1\) , \( 64 a - 65\) , \( -13597\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(64a-65\right){x}-13597$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.