Learn more

Refine search


Results (10 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1344.2-b6 1344.2-b \(\Q(\sqrt{-3}) \) \( 2^{6} \cdot 3 \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.063601265$ 1.228140953 \( -\frac{7384301576}{147} a + \frac{25339394260}{147} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -234 a - 43\) , \( 1895 a - 638\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-234a-43\right){x}+1895a-638$
5376.2-b6 5376.2-b \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.063601265$ 1.228140953 \( -\frac{7384301576}{147} a + \frac{25339394260}{147} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -234 a - 43\) , \( -1895 a + 638\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-234a-43\right){x}-1895a+638$
16128.2-e6 16128.2-e \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 7 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.614070476$ 1.418135020 \( -\frac{7384301576}{147} a + \frac{25339394260}{147} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 704 a + 128\) , \( 2560 a - 9328\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(704a+128\right){x}+2560a-9328$
16128.2-g6 16128.2-g \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.985258728$ $0.614070476$ 2.794459814 \( -\frac{7384301576}{147} a + \frac{25339394260}{147} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 704 a + 128\) , \( -2560 a + 9328\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(704a+128\right){x}-2560a+9328$
28224.3-d6 28224.3-d \(\Q(\sqrt{-3}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.232096824$ 2.144018622 \( -\frac{7384301576}{147} a + \frac{25339394260}{147} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -6007 a + 1469\) , \( -162985 a + 134224\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-6007a+1469\right){x}-162985a+134224$
37632.3-d6 37632.3-d \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.402003491$ 0.928387296 \( -\frac{7384301576}{147} a + \frac{25339394260}{147} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -1513 a + 2003\) , \( -11377 a - 22477\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-1513a+2003\right){x}-11377a-22477$
37632.3-j6 37632.3-j \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.237899947$ $0.402003491$ 3.934412475 \( -\frac{7384301576}{147} a + \frac{25339394260}{147} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 2003 a - 490\) , \( 11377 a + 22477\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(2003a-490\right){x}+11377a+22477$
86016.2-i6 86016.2-i \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3 \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.599470554$ $0.531800632$ 3.192516246 \( -\frac{7384301576}{147} a + \frac{25339394260}{147} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -937 a - 171\) , \( 14052 a - 4167\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-937a-171\right){x}+14052a-4167$
86016.2-bf6 86016.2-bf \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3 \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.078284816$ $0.531800632$ 5.104853393 \( -\frac{7384301576}{147} a + \frac{25339394260}{147} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -937 a - 171\) , \( -14052 a + 4167\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-937a-171\right){x}-14052a+4167$
112896.3-q6 112896.3-q \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.198000371$ $0.232096824$ 4.712553729 \( -\frac{7384301576}{147} a + \frac{25339394260}{147} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 4540 a - 6008\) , \( 167524 a - 140232\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(4540a-6008\right){x}+167524a-140232$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.