Learn more

Refine search


Results (14 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
196.2-a5 196.2-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $0.437708567$ 0.505422318 \( -\frac{14378731676028886375}{3256827195820898} a + \frac{34112602872034890375}{3256827195820898} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( 184 a - 415\) , \( 1880 a - 2686\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(184a-415\right){x}+1880a-2686$
9604.3-c5 9604.3-c \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.062529795$ 2.599314781 \( -\frac{14378731676028886375}{3256827195820898} a + \frac{34112602872034890375}{3256827195820898} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( 11270 a + 9040\) , \( -633570 a + 930252\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}+\left(11270a+9040\right){x}-633570a+930252$
12348.2-a6 12348.2-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.637158682$ $0.095515840$ 2.326864094 \( -\frac{14378731676028886375}{3256827195820898} a + \frac{34112602872034890375}{3256827195820898} \) \( \bigl[1\) , \( a\) , \( 1\) , \( 6498 a - 8288\) , \( -257025 a + 185318\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(6498a-8288\right){x}-257025a+185318$
12348.3-a6 12348.3-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.637158682$ $0.095515840$ 2.326864094 \( -\frac{14378731676028886375}{3256827195820898} a + \frac{34112602872034890375}{3256827195820898} \) \( \bigl[a\) , \( a\) , \( 1\) , \( 697 a - 7878\) , \( -47535 a + 249773\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(697a-7878\right){x}-47535a+249773$
12544.2-k6 12544.2-k \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.157002788$ $0.109427141$ 3.191239339 \( -\frac{14378731676028886375}{3256827195820898} a + \frac{34112602872034890375}{3256827195820898} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 3680 a + 2952\) , \( -120320 a + 171888\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(3680a+2952\right){x}-120320a+171888$
33124.4-c6 33124.4-c \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.121398514$ 2.523220734 \( -\frac{14378731676028886375}{3256827195820898} a + \frac{34112602872034890375}{3256827195820898} \) \( \bigl[a\) , \( 1\) , \( 1\) , \( 4741 a - 134\) , \( 2953 a - 113338\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+{x}^{2}+\left(4741a-134\right){x}+2953a-113338$
33124.6-c6 33124.6-c \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.121398514$ 2.523220734 \( -\frac{14378731676028886375}{3256827195820898} a + \frac{34112602872034890375}{3256827195820898} \) \( \bigl[1\) , \( a - 1\) , \( 1\) , \( -4926 a + 548\) , \( 128647 a - 74665\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-4926a+548\right){x}+128647a-74665$
87808.2-a6 87808.2-a \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 7^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.359079322$ $0.041359572$ 2.566762269 \( -\frac{14378731676028886375}{3256827195820898} a + \frac{34112602872034890375}{3256827195820898} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -9545 a - 34653\) , \( -852103 a - 2328103\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-9545a-34653\right){x}-852103a-2328103$
87808.2-r6 87808.2-r \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 7^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.041359572$ 3.438570245 \( -\frac{14378731676028886375}{3256827195820898} a + \frac{34112602872034890375}{3256827195820898} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 44198 a - 9545\) , \( 852103 a + 2328103\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(44198a-9545\right){x}+852103a+2328103$
87808.3-c6 87808.3-c \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 7^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.359079322$ $0.041359572$ 2.566762269 \( -\frac{14378731676028886375}{3256827195820898} a + \frac{34112602872034890375}{3256827195820898} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -38295 a - 3718\) , \( 3218023 a - 1142126\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-38295a-3718\right){x}+3218023a-1142126$
87808.3-t6 87808.3-t \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 7^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.041359572$ 3.438570245 \( -\frac{14378731676028886375}{3256827195820898} a + \frac{34112602872034890375}{3256827195820898} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 42013 a - 38295\) , \( -3218023 a + 1142126\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(42013a-38295\right){x}-3218023a+1142126$
112896.2-r6 112896.2-r \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.063177789$ 2.626251405 \( -\frac{14378731676028886375}{3256827195820898} a + \frac{34112602872034890375}{3256827195820898} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -11039 a - 8855\) , \( -690263 a - 195216\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-11039a-8855\right){x}-690263a-195216$
112896.2-ba6 112896.2-ba \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.063177789$ 2.626251405 \( -\frac{14378731676028886375}{3256827195820898} a + \frac{34112602872034890375}{3256827195820898} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 19896 a - 11040\) , \( 670368 a + 206256\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(19896a-11040\right){x}+670368a+206256$
122500.2-e6 122500.2-e \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 5^{4} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.087541713$ 3.639040694 \( -\frac{14378731676028886375}{3256827195820898} a + \frac{34112602872034890375}{3256827195820898} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( 4613 a - 10363\) , \( 229250 a - 340331\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(4613a-10363\right){x}+229250a-340331$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.