Properties

Label 6.6.1279733.1-7.2-d6
Base field 6.6.1279733.1
Conductor norm \( 7 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.1279733.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 6 x^{4} + 10 x^{3} + 10 x^{2} - 11 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -11, 10, 10, -6, -2, 1]))
 
gp: K = nfinit(Polrev([-1, -11, 10, 10, -6, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -11, 10, 10, -6, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-2a^{4}-2a^{3}+5a^{2}-2a-1\right){x}{y}+a{y}={x}^{3}+\left(-a^{5}+a^{4}+3a^{3}-a^{2}+a-2\right){x}^{2}+\left(48a^{5}-57a^{4}-384a^{3}+429a^{2}+713a-758\right){x}+724a^{5}-1072a^{4}-4688a^{3}+5920a^{2}+7542a-8105\)
sage: E = EllipticCurve([K([-1,-2,5,-2,-2,1]),K([-2,1,-1,3,1,-1]),K([0,1,0,0,0,0]),K([-758,713,429,-384,-57,48]),K([-8105,7542,5920,-4688,-1072,724])])
 
gp: E = ellinit([Polrev([-1,-2,5,-2,-2,1]),Polrev([-2,1,-1,3,1,-1]),Polrev([0,1,0,0,0,0]),Polrev([-758,713,429,-384,-57,48]),Polrev([-8105,7542,5920,-4688,-1072,724])], K);
 
magma: E := EllipticCurve([K![-1,-2,5,-2,-2,1],K![-2,1,-1,3,1,-1],K![0,1,0,0,0,0],K![-758,713,429,-384,-57,48],K![-8105,7542,5920,-4688,-1072,724]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^4+a^3+4a^2-a-1)\) = \((-a^4+a^3+4a^2-a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 7 \) = \(7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^5+2a^4+3a^3-6a^2+3)\) = \((-a^4+a^3+4a^2-a-1)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -49 \) = \(-7^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1307780824025356872024765295948965037006665607}{7} a^{5} - \frac{1426930782360125700490308291091787017129909047}{7} a^{4} - \frac{9143610193366820283442749807521617239815916698}{7} a^{3} + \frac{4767258720016713504152715749572825371641060421}{7} a^{2} + \frac{17410729135899459869092701189140814182089683462}{7} a + \frac{1438874534605637964988709222541326697190256371}{7} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0 \le r \le 5\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{13}{4} a^{5} - a^{4} + 29 a^{3} - 5 a^{2} - \frac{107}{2} a + \frac{117}{4} : -\frac{1}{8} a^{5} + \frac{57}{8} a^{4} - \frac{15}{4} a^{3} - 29 a^{2} + \frac{47}{8} a + \frac{113}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0 \le r \le 5\)
Regulator: not available
Period: \( 0.95645328078739093283928501436968604879 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 2.62611 \)
Analytic order of Ш: not available

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^4+a^3+4a^2-a-1)\) \(7\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 7.2-d consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.