Properties

Label 6.6.1134389.1-13.1-a1
Base field 6.6.1134389.1
Conductor norm \( 13 \)
CM no
Base change no
Q-curve no
Torsion order \( 7 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.1134389.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 6 x^{3} + 4 x^{2} - 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -3, 4, 6, -4, -2, 1]))
 
gp: K = nfinit(Polrev([-1, -3, 4, 6, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -3, 4, 6, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(-a^{5}+3a^{4}+2a^{3}-9a^{2}+2a+4\right){y}={x}^{3}+\left(-2a^{5}+5a^{4}+5a^{3}-13a^{2}+3\right){x}^{2}+\left(6a^{5}-16a^{4}-15a^{3}+48a^{2}-23\right){x}-3a^{5}+9a^{4}+5a^{3}-27a^{2}+6a+12\)
sage: E = EllipticCurve([K([0,1,0,0,0,0]),K([3,0,-13,5,5,-2]),K([4,2,-9,2,3,-1]),K([-23,0,48,-15,-16,6]),K([12,6,-27,5,9,-3])])
 
gp: E = ellinit([Polrev([0,1,0,0,0,0]),Polrev([3,0,-13,5,5,-2]),Polrev([4,2,-9,2,3,-1]),Polrev([-23,0,48,-15,-16,6]),Polrev([12,6,-27,5,9,-3])], K);
 
magma: E := EllipticCurve([K![0,1,0,0,0,0],K![3,0,-13,5,5,-2],K![4,2,-9,2,3,-1],K![-23,0,48,-15,-16,6],K![12,6,-27,5,9,-3]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-a^2-2a+1)\) = \((a^3-a^2-2a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 13 \) = \(13\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^5+2a^4+4a^3-7a^2-3a+5)\) = \((a^3-a^2-2a+1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 13 \) = \(13\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{124200}{13} a^{5} - \frac{154732}{13} a^{4} - \frac{604704}{13} a^{3} + \frac{256238}{13} a^{2} + \frac{701798}{13} a + \frac{201965}{13} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/7\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a^{5} - a^{4} - 5 a^{3} + 6 a + 5 : 3 a^{5} - 4 a^{4} - 14 a^{3} + 7 a^{2} + 15 a + 5 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 86211.576181876407179242211159434063711 \)
Tamagawa product: \( 1 \)
Torsion order: \(7\)
Leading coefficient: \( 1.65192 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-a^2-2a+1)\) \(13\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(7\) 7B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 7.
Its isogeny class 13.1-a consists of curves linked by isogenies of degree 7.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.