Properties

Label 5.5.181057.1-27.2-c4
Base field 5.5.181057.1
Conductor norm \( 27 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.181057.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 4 x^{3} + 7 x^{2} + 2 x - 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-3, 2, 7, -4, -2, 1]))
 
gp: K = nfinit(Polrev([-3, 2, 7, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, 2, 7, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-6a^{2}-a+5\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(-a^{2}+2\right){x}^{2}+\left(-221a^{4}+299a^{3}+1068a^{2}-819a-1007\right){x}-2885a^{4}+3879a^{3}+14030a^{2}-10778a-13016\)
sage: E = EllipticCurve([K([5,-1,-6,0,1]),K([2,0,-1,0,0]),K([-1,0,1,0,0]),K([-1007,-819,1068,299,-221]),K([-13016,-10778,14030,3879,-2885])])
 
gp: E = ellinit([Polrev([5,-1,-6,0,1]),Polrev([2,0,-1,0,0]),Polrev([-1,0,1,0,0]),Polrev([-1007,-819,1068,299,-221]),Polrev([-13016,-10778,14030,3879,-2885])], K);
 
magma: E := EllipticCurve([K![5,-1,-6,0,1],K![2,0,-1,0,0],K![-1,0,1,0,0],K![-1007,-819,1068,299,-221],K![-13016,-10778,14030,3879,-2885]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-a^3-4a^2+a+3)\) = \((a)^{2}\cdot(a^4-a^3-5a^2+2a+5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 27 \) = \(3^{2}\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((86a^4-85a^3-401a^2+25a+498)\) = \((a)^{13}\cdot(a^4-a^3-5a^2+2a+5)^{12}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -847288609443 \) = \(-3^{13}\cdot3^{12}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{34495656525909971}{531441} a^{4} + \frac{28517667503038951}{177147} a^{3} + \frac{81066375780822875}{531441} a^{2} - \frac{258890063675704426}{531441} a + \frac{39365969687406722}{177147} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-3 a^{4} + \frac{13}{4} a^{3} + \frac{37}{2} a^{2} - 13 a - \frac{43}{2} : \frac{25}{4} a^{4} - \frac{53}{8} a^{3} - \frac{239}{8} a^{2} + \frac{47}{4} a + \frac{53}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 7.1889095445860672287664172467836528266 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 1.08127294 \)
Analytic order of Ш: \( 64 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(3\) \(2\) \(I_{7}^{*}\) Additive \(-1\) \(2\) \(13\) \(7\)
\((a^4-a^3-5a^2+2a+5)\) \(3\) \(2\) \(I_{12}\) Non-split multiplicative \(1\) \(1\) \(12\) \(12\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 27.2-c consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.