Properties

Label 5.5.179024.1-9.1-c3
Base field 5.5.179024.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 6 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.179024.1

Generator \(a\), with minimal polynomial \( x^{5} - 8 x^{3} + 6 x - 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-2, 6, 0, -8, 0, 1]))
 
gp: K = nfinit(Polrev([-2, 6, 0, -8, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, 6, 0, -8, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{4}+a^{3}-16a^{2}-8a+10\right){x}{y}+\left(-2a^{4}-a^{3}+15a^{2}+8a-5\right){y}={x}^{3}+\left(6a^{4}+3a^{3}-46a^{2}-25a+22\right){x}^{2}+\left(-5a^{4}-5a^{3}+39a^{2}+33a-20\right){x}+11a^{4}+6a^{3}-82a^{2}-44a+38\)
sage: E = EllipticCurve([K([10,-8,-16,1,2]),K([22,-25,-46,3,6]),K([-5,8,15,-1,-2]),K([-20,33,39,-5,-5]),K([38,-44,-82,6,11])])
 
gp: E = ellinit([Polrev([10,-8,-16,1,2]),Polrev([22,-25,-46,3,6]),Polrev([-5,8,15,-1,-2]),Polrev([-20,33,39,-5,-5]),Polrev([38,-44,-82,6,11])], K);
 
magma: E := EllipticCurve([K![10,-8,-16,1,2],K![22,-25,-46,3,6],K![-5,8,15,-1,-2],K![-20,33,39,-5,-5],K![38,-44,-82,6,11]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-4a^4-2a^3+31a^2+16a-17)\) = \((2a^4+a^3-15a^2-7a+7)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(3^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^3+2a^2+7a-11)\) = \((2a^4+a^3-15a^2-7a+7)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 6561 \) = \(3^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{31616}{9} a^{4} + \frac{9088}{9} a^{3} + \frac{325760}{9} a^{2} + \frac{158336}{9} a - \frac{135424}{9} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-2 a^{4} - a^{3} + 16 a^{2} + 9 a - 8 : 2 a^{4} + 2 a^{3} - 14 a^{2} - 10 a + 7 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 7633.8769516288736668459820867746350569 \)
Tamagawa product: \( 2 \)
Torsion order: \(6\)
Leading coefficient: \( 1.00234452 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2a^4+a^3-15a^2-7a+7)\) \(3\) \(2\) \(I_{2}^{*}\) Additive \(-1\) \(2\) \(8\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 9.1-c consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.