Properties

Label 5.5.179024.1-1.1-a4
Base field 5.5.179024.1
Conductor norm \( 1 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.179024.1

Generator \(a\), with minimal polynomial \( x^{5} - 8 x^{3} + 6 x - 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-2, 6, 0, -8, 0, 1]))
 
gp: K = nfinit(Polrev([-2, 6, 0, -8, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, 6, 0, -8, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(3a^{4}+2a^{3}-24a^{2}-15a+16\right){x}{y}+\left(a^{4}+a^{3}-8a^{2}-7a+5\right){y}={x}^{3}+\left(3a^{4}+2a^{3}-24a^{2}-16a+14\right){x}^{2}+\left(16a^{4}+16a^{3}-125a^{2}-117a+73\right){x}-497a^{4}-266a^{3}+3815a^{2}+2050a-1754\)
sage: E = EllipticCurve([K([16,-15,-24,2,3]),K([14,-16,-24,2,3]),K([5,-7,-8,1,1]),K([73,-117,-125,16,16]),K([-1754,2050,3815,-266,-497])])
 
gp: E = ellinit([Polrev([16,-15,-24,2,3]),Polrev([14,-16,-24,2,3]),Polrev([5,-7,-8,1,1]),Polrev([73,-117,-125,16,16]),Polrev([-1754,2050,3815,-266,-497])], K);
 
magma: E := EllipticCurve([K![16,-15,-24,2,3],K![14,-16,-24,2,3],K![5,-7,-8,1,1],K![73,-117,-125,16,16],K![-1754,2050,3815,-266,-497]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1)\) = \((1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 1 \) = 1
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1)\) = \((1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1 \) = 1
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 1414198780324 a^{4} + 3815036657888 a^{3} - 1021893446812 a^{2} - 2756727621312 a + 1048460789992 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(5 a^{4} + 2 a^{3} - 38 a^{2} - 16 a + 18 : -23 a^{4} - 12 a^{3} + 177 a^{2} + 91 a - 79 : 1\right)$
Height \(0.068291357706951455053523047916884818075\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{5}{2} a^{4} + \frac{3}{2} a^{3} - \frac{73}{4} a^{2} - 11 a + 3 : \frac{31}{4} a^{4} + \frac{37}{8} a^{3} - \frac{245}{4} a^{2} - \frac{141}{4} a + \frac{81}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.068291357706951455053523047916884818075 \)
Period: \( 4289.8026220562702952033230747474306985 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 0.865480808 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
No primes of bad reduction.

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 1.1-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.