Properties

Label 5.5.153424.1-7.1-a1
Base field 5.5.153424.1
Conductor norm \( 7 \)
CM no
Base change no
Q-curve no
Torsion order \( 6 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.153424.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 4 x^{3} + 8 x^{2} - 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-2, 0, 8, -4, -2, 1]))
 
gp: K = nfinit(Polrev([-2, 0, 8, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, 0, 8, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{4}-a^{3}-10a^{2}+3a+6\right){x}{y}+\left(a^{4}-5a^{2}-a+3\right){y}={x}^{3}+\left(a^{4}-2a^{3}-4a^{2}+7a\right){x}^{2}+\left(-69a^{4}-16a^{3}+234a^{2}-38a-68\right){x}-893a^{4}-155a^{3}+3067a^{2}-637a-929\)
sage: E = EllipticCurve([K([6,3,-10,-1,2]),K([0,7,-4,-2,1]),K([3,-1,-5,0,1]),K([-68,-38,234,-16,-69]),K([-929,-637,3067,-155,-893])])
 
gp: E = ellinit([Polrev([6,3,-10,-1,2]),Polrev([0,7,-4,-2,1]),Polrev([3,-1,-5,0,1]),Polrev([-68,-38,234,-16,-69]),Polrev([-929,-637,3067,-155,-893])], K);
 
magma: E := EllipticCurve([K![6,3,-10,-1,2],K![0,7,-4,-2,1],K![3,-1,-5,0,1],K![-68,-38,234,-16,-69],K![-929,-637,3067,-155,-893]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a+1)\) = \((a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 7 \) = \(7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((5a^4-a^3-20a^2-a-1)\) = \((a+1)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 117649 \) = \(7^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{8004305085704}{117649} a^{4} + \frac{4141088345280}{117649} a^{3} + \frac{37991329701812}{117649} a^{2} - \frac{7545938455168}{117649} a - \frac{10474018356248}{117649} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(9 a^{4} - 14 a^{3} - 46 a^{2} + 48 a + 31 : 53 a^{4} - 66 a^{3} - 252 a^{2} + 242 a + 155 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 3502.6115511987247155257020611078769636 \)
Tamagawa product: \( 6 \)
Torsion order: \(6\)
Leading coefficient: \( 1.49036991 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+1)\) \(7\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 7.1-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.