Properties

Label 4.4.9248.1-26.4-b1
Base field 4.4.9248.1
Conductor norm \( 26 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.9248.1

Generator \(a\), with minimal polynomial \( x^{4} - 5 x^{2} + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, -5, 0, 1]))
 
gp: K = nfinit(Polrev([2, 0, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a^{3}+a^{2}-5a-4\right){x}^{2}+\left(92a^{3}+43a^{2}-427a-275\right){x}+353a^{3}+162a^{2}-1654a-1064\)
sage: E = EllipticCurve([K([1,1,0,0]),K([-4,-5,1,1]),K([1,0,0,0]),K([-275,-427,43,92]),K([-1064,-1654,162,353])])
 
gp: E = ellinit([Polrev([1,1,0,0]),Polrev([-4,-5,1,1]),Polrev([1,0,0,0]),Polrev([-275,-427,43,92]),Polrev([-1064,-1654,162,353])], K);
 
magma: E := EllipticCurve([K![1,1,0,0],K![-4,-5,1,1],K![1,0,0,0],K![-275,-427,43,92],K![-1064,-1654,162,353]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3+a^2-3a)\) = \((a)\cdot(a^2+a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 26 \) = \(2\cdot13\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-24a^3-75a^2+64a+194)\) = \((a)^{6}\cdot(a^2+a-3)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -308915776 \) = \(-2^{6}\cdot13^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{13179827674651809978387}{38614472} a^{3} + \frac{28149201874182484162433}{38614472} a^{2} - \frac{5778658371471464319445}{38614472} a - \frac{12341938383390744470007}{38614472} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{11}{2} a^{3} + 7 a^{2} - 12 a - 9 : -\frac{137}{4} a^{3} - \frac{239}{4} a^{2} + \frac{105}{2} a + \frac{101}{2} : 1\right)$
Height \(1.0485833041334571638199253867261092402\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{3}{4} a^{2} - \frac{7}{2} a - \frac{9}{4} : -\frac{3}{8} a^{3} + \frac{11}{8} a^{2} + \frac{23}{8} a + \frac{5}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.0485833041334571638199253867261092402 \)
Period: \( 14.243818376744087536939896535227502902 \)
Tamagawa product: \( 12 \)  =  \(2\cdot( 2 \cdot 3 )\)
Torsion order: \(2\)
Leading coefficient: \( 1.86374590102889 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)
\((a^2+a-3)\) \(13\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 26.4-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.