Properties

Label 4.4.8768.1-28.2-a1
Base field 4.4.8768.1
Conductor norm \( 28 \)
CM no
Base change no
Q-curve no
Torsion order \( 3 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.8768.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 5 x^{2} + 6 x + 7 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([7, 6, -5, -2, 1]))
 
gp: K = nfinit(Polrev([7, 6, -5, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![7, 6, -5, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a^{3}-5a-2\right){y}={x}^{3}+\left(-a^{3}+2a^{2}+4a-4\right){x}^{2}+\left(-4a^{2}+5a+18\right){x}+2a^{2}-a-9\)
sage: E = EllipticCurve([K([1,1,0,0]),K([-4,4,2,-1]),K([-2,-5,0,1]),K([18,5,-4,0]),K([-9,-1,2,0])])
 
gp: E = ellinit([Polrev([1,1,0,0]),Polrev([-4,4,2,-1]),Polrev([-2,-5,0,1]),Polrev([18,5,-4,0]),Polrev([-9,-1,2,0])], K);
 
magma: E := EllipticCurve([K![1,1,0,0],K![-4,4,2,-1],K![-2,-5,0,1],K![18,5,-4,0],K![-9,-1,2,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+a^2+5a-2)\) = \((a^2-a-3)\cdot(a^3-2a^2-3a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 28 \) = \(4\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-4a^2+8a+4)\) = \((a^2-a-3)^{4}\cdot(a^3-2a^2-3a+3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1792 \) = \(4^{4}\cdot7\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1681633}{28} a^{3} - \frac{66257}{7} a^{2} - \frac{8823963}{28} a - \frac{449645}{2} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a + 1 : -a^{2} + 2 a + 3 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 391.56625678135690894153698061937015459 \)
Tamagawa product: \( 4 \)  =  \(2^{2}\cdot1\)
Torsion order: \(3\)
Leading coefficient: \( 1.85854238880356 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-a-3)\) \(4\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((a^3-2a^2-3a+3)\) \(7\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 28.2-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.