Properties

Label 4.4.8069.1-19.1-a4
Base field 4.4.8069.1
Conductor norm \( 19 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.8069.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 5 x^{2} + 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 5, -5, -1, 1]))
 
gp: K = nfinit(Polrev([1, 5, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 5, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a^{2}+a-2\right){y}={x}^{3}+\left(-a^{3}+a^{2}+4a-3\right){x}^{2}+\left(659a^{3}-621a^{2}-3152a+3119\right){x}+10968a^{3}-11477a^{2}-52551a+57385\)
sage: E = EllipticCurve([K([1,0,0,0]),K([-3,4,1,-1]),K([-2,1,1,0]),K([3119,-3152,-621,659]),K([57385,-52551,-11477,10968])])
 
gp: E = ellinit([Polrev([1,0,0,0]),Polrev([-3,4,1,-1]),Polrev([-2,1,1,0]),Polrev([3119,-3152,-621,659]),Polrev([57385,-52551,-11477,10968])], K);
 
magma: E := EllipticCurve([K![1,0,0,0],K![-3,4,1,-1],K![-2,1,1,0],K![3119,-3152,-621,659],K![57385,-52551,-11477,10968]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2+a-4)\) = \((a^2+a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 19 \) = \(19\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((296a^3+315a^2-379a-1486)\) = \((a^2+a-4)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 6131066257801 \) = \(19^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{7453708100651023724731227}{6131066257801} a^{3} - \frac{1737250893512074261087546}{6131066257801} a^{2} + \frac{35126388668209027651898288}{6131066257801} a + \frac{6044827780477046155354082}{6131066257801} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-8 a^{3} + a^{2} + 39 a - 10 : 4 a^{3} - a^{2} - 20 a + 6 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 17.092850423142596887147056172409034062 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 2.37856293751919 \)
Analytic order of Ш: \( 25 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2+a-4)\) \(19\) \(2\) \(I_{10}\) Non-split multiplicative \(1\) \(1\) \(10\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.4.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 19.1-a consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.