Properties

Label 4.4.7488.1-9.1-d3
Base field 4.4.7488.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 6 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.7488.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 4 x^{2} + 2 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 2, -4, -2, 1]))
 
gp: K = nfinit(Polrev([1, 2, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 2, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(-a^{2}+3a+1\right){x}^{2}+\left(65a^{3}-226a^{2}+73a+37\right){x}-587a^{3}+2021a^{2}-557a-401\)
sage: E = EllipticCurve([K([1,1,0,0]),K([1,3,-1,0]),K([1,0,0,0]),K([37,73,-226,65]),K([-401,-557,2021,-587])])
 
gp: E = ellinit([Polrev([1,1,0,0]),Polrev([1,3,-1,0]),Polrev([1,0,0,0]),Polrev([37,73,-226,65]),Polrev([-401,-557,2021,-587])], K);
 
magma: E := EllipticCurve([K![1,1,0,0],K![1,3,-1,0],K![1,0,0,0],K![37,73,-226,65],K![-401,-557,2021,-587]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-2a^2-3a+1)\) = \((a^3-2a^2-3a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((27)\) = \((a^3-2a^2-3a+1)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 531441 \) = \(9^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{67512848}{9} a^{3} - \frac{135025696}{9} a^{2} - \frac{67512848}{3} a + \frac{553427224}{27} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(66 a^{3} - 149 a^{2} - 231 a + 210 : -1145 a^{3} + 2644 a^{2} + 3786 a - 3545 : 1\right)$
Height \(0.48568901462542040645288746623488212018\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-2 a^{3} + 3 a^{2} + 8 a + 3 : 3 a^{3} + 8 a^{2} - 47 a - 14 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.48568901462542040645288746623488212018 \)
Period: \( 445.03967444381771234628142985218807474 \)
Tamagawa product: \( 6 \)
Torsion order: \(6\)
Leading coefficient: \( 1.66526300107125 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-2a^2-3a+1)\) \(9\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3Cs.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 9.1-d consists of curves linked by isogenies of degrees dividing 18.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.