Properties

Label 4.4.725.1-139.3-b1
Base field 4.4.725.1
Conductor norm \( 139 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.725.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 3 x^{2} + x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 1, -3, -1, 1]))
 
gp: K = nfinit(Polrev([1, 1, -3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 1, -3, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-2a+1\right){x}{y}+\left(a^{3}-a^{2}-a+2\right){y}={x}^{3}+\left(a^{3}-a^{2}-3a\right){x}^{2}+\left(-16a^{3}-18a^{2}+148a-106\right){x}-75a^{3}-188a^{2}+945a-576\)
sage: E = EllipticCurve([K([1,-2,0,1]),K([0,-3,-1,1]),K([2,-1,-1,1]),K([-106,148,-18,-16]),K([-576,945,-188,-75])])
 
gp: E = ellinit([Polrev([1,-2,0,1]),Polrev([0,-3,-1,1]),Polrev([2,-1,-1,1]),Polrev([-106,148,-18,-16]),Polrev([-576,945,-188,-75])], K);
 
magma: E := EllipticCurve([K![1,-2,0,1],K![0,-3,-1,1],K![2,-1,-1,1],K![-106,148,-18,-16],K![-576,945,-188,-75]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+a^2+3)\) = \((-a^3+a^2+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 139 \) = \(139\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-5726a^3+6804a^2+10991a-6369)\) = \((-a^3+a^2+3)^{7}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1002544368429379 \) = \(139^{7}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{15524334380384952878789090}{1002544368429379} a^{3} - \frac{36570245179369727318794324}{1002544368429379} a^{2} + \frac{3003941181725277973894315}{1002544368429379} a + \frac{11451131736082354617257880}{1002544368429379} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.47547419860099517092535750990504268709 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 0.865274752616010 \)
Analytic order of Ш: \( 49 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+a^2+3)\) \(139\) \(1\) \(I_{7}\) Non-split multiplicative \(1\) \(1\) \(7\) \(7\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(7\) 7B.1.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 7.
Its isogeny class 139.3-b consists of curves linked by isogenies of degree 7.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.