Properties

Label 4.4.4752.1-39.2-e1
Base field 4.4.4752.1
Conductor norm \( 39 \)
CM no
Base change no
Q-curve no
Torsion order \( 14 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.4752.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 3 x^{2} + 4 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 4, -3, -2, 1]))
 
gp: K = nfinit(Polrev([1, 4, -3, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 4, -3, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-4a-1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a^{3}-2a^{2}-3a+3\right){x}^{2}+\left(-3a^{3}+4a^{2}+9a-8\right){x}-2a^{2}+a+5\)
sage: E = EllipticCurve([K([-1,-4,0,1]),K([3,-3,-2,1]),K([-1,0,1,0]),K([-8,9,4,-3]),K([5,1,-2,0])])
 
gp: E = ellinit([Polrev([-1,-4,0,1]),Polrev([3,-3,-2,1]),Polrev([-1,0,1,0]),Polrev([-8,9,4,-3]),Polrev([5,1,-2,0])], K);
 
magma: E := EllipticCurve([K![-1,-4,0,1],K![3,-3,-2,1],K![-1,0,1,0],K![-8,9,4,-3],K![5,1,-2,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-4)\) = \((a^3-a^2-4a+1)\cdot(a^2+a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 39 \) = \(3\cdot13\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((27a^2-108a+27)\) = \((a^3-a^2-4a+1)^{14}\cdot(a^2+a-2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 62178597 \) = \(3^{14}\cdot13\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{15263744}{1053} a^{3} - \frac{34884416}{1053} a^{2} - \frac{39642112}{1053} a + \frac{24189824}{351} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{3} + 4 a^{2} - 4 a - 1 : 7 a^{3} - 22 a^{2} + 11 a + 2 : 1\right)$
Height \(0.74264786874714864685746146636994417285\)
Torsion structure: \(\Z/14\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a^{3} + 2 a^{2} + 3 a - 4 : -2 a^{3} + 3 a^{2} + 6 a - 4 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.74264786874714864685746146636994417285 \)
Period: \( 751.20686456935556936470852532490741900 \)
Tamagawa product: \( 14 \)  =  \(( 2 \cdot 7 )\cdot1\)
Torsion order: \(14\)
Leading coefficient: \( 2.31225765868508 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-a^2-4a+1)\) \(3\) \(14\) \(I_{14}\) Split multiplicative \(-1\) \(1\) \(14\) \(14\)
\((a^2+a-2)\) \(13\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(7\) 7B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 7 and 14.
Its isogeny class 39.2-e consists of curves linked by isogenies of degrees dividing 14.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.