Properties

Label 4.4.3600.1-59.3-a1
Base field \(\Q(\sqrt{3}, \sqrt{5})\)
Conductor norm \( 59 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{3}, \sqrt{5})\)

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 7 x^{2} + 8 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 8, -7, -2, 1]))
 
gp: K = nfinit(Polrev([1, 8, -7, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 8, -7, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(-\frac{4}{7}a^{3}+\frac{6}{7}a^{2}+\frac{31}{7}a-\frac{13}{7}\right){x}{y}+\left(\frac{1}{7}a^{3}+\frac{2}{7}a^{2}-\frac{13}{7}a-\frac{2}{7}\right){y}={x}^{3}+\left(\frac{1}{7}a^{3}+\frac{2}{7}a^{2}-\frac{20}{7}a-\frac{2}{7}\right){x}^{2}+\left(-\frac{17}{7}a^{3}-\frac{41}{7}a^{2}+\frac{74}{7}a+\frac{13}{7}\right){x}+2a^{3}+6a^{2}-9a-1\)
sage: E = EllipticCurve([K([-13/7,31/7,6/7,-4/7]),K([-2/7,-20/7,2/7,1/7]),K([-2/7,-13/7,2/7,1/7]),K([13/7,74/7,-41/7,-17/7]),K([-1,-9,6,2])])
 
gp: E = ellinit([Polrev([-13/7,31/7,6/7,-4/7]),Polrev([-2/7,-20/7,2/7,1/7]),Polrev([-2/7,-13/7,2/7,1/7]),Polrev([13/7,74/7,-41/7,-17/7]),Polrev([-1,-9,6,2])], K);
 
magma: E := EllipticCurve([K![-13/7,31/7,6/7,-4/7],K![-2/7,-20/7,2/7,1/7],K![-2/7,-13/7,2/7,1/7],K![13/7,74/7,-41/7,-17/7],K![-1,-9,6,2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((5/7a^3-4/7a^2-37/7a+11/7)\) = \((5/7a^3-4/7a^2-37/7a+11/7)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 59 \) = \(59\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((113/7a^3-75/7a^2-111/7a-541/7)\) = \((5/7a^3-4/7a^2-37/7a+11/7)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -714924299 \) = \(-59^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{812095893390}{5004470093} a^{3} - \frac{2396259161650}{5004470093} a^{2} + \frac{1748065265525}{5004470093} a - \frac{653835118135}{5004470093} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{5}{7} a^{3} + \frac{4}{7} a^{2} + \frac{37}{7} a + \frac{3}{7} : -\frac{6}{7} a^{3} - \frac{5}{7} a^{2} + \frac{43}{7} a + \frac{5}{7} : 1\right)$
Height \(0.020973006448587162977468189008028429003\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.020973006448587162977468189008028429003 \)
Period: \( 329.30956782135054087063619922912416878 \)
Tamagawa product: \( 5 \)
Torsion order: \(1\)
Leading coefficient: \( 2.30220389649954 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((5/7a^3-4/7a^2-37/7a+11/7)\) \(59\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5B[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 59.3-a consists of curves linked by isogenies of degree 5.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.