Properties

Label 4.4.2525.1-1.1-a1
Base field 4.4.2525.1
Conductor norm \( 1 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.2525.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 4 x^{2} + 5 x + 5 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([5, 5, -4, -2, 1]))
 
gp: K = nfinit(Polrev([5, 5, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5, 5, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-3a-3\right){x}{y}+\left(a^{2}-2\right){y}={x}^{3}+\left(-a^{3}+3a+3\right){x}^{2}+\left(304a^{3}-80a^{2}-1373a-884\right){x}+5992a^{3}-1423a^{2}-26497a-16937\)
sage: E = EllipticCurve([K([-3,-3,0,1]),K([3,3,0,-1]),K([-2,0,1,0]),K([-884,-1373,-80,304]),K([-16937,-26497,-1423,5992])])
 
gp: E = ellinit([Polrev([-3,-3,0,1]),Polrev([3,3,0,-1]),Polrev([-2,0,1,0]),Polrev([-884,-1373,-80,304]),Polrev([-16937,-26497,-1423,5992])], K);
 
magma: E := EllipticCurve([K![-3,-3,0,1],K![3,3,0,-1],K![-2,0,1,0],K![-884,-1373,-80,304],K![-16937,-26497,-1423,5992]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1)\) = \((1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 1 \) = 1
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1)\) = \((1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1 \) = 1
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -17038484321262621392677 a^{3} + 47324121859575160666349 a^{2} + 31360177851679811257113 a - 109574465986214263634831 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.42869629016433029105799593505762430899 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 0.418037376978190 \)
Analytic order of Ш: \( 49 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
No primes of bad reduction.

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5B.4.1[2]
\(7\) 7B.1.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5, 7 and 35.
Its isogeny class 1.1-a consists of curves linked by isogenies of degrees dividing 35.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.