Properties

Label 4.4.19821.1-63.1-c3
Base field 4.4.19821.1
Conductor norm \( 63 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.19821.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 8 x^{2} + 6 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, 6, -8, -1, 1]))
 
gp: K = nfinit(Polrev([3, 6, -8, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, 6, -8, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}+\left(\frac{2}{3}a^{3}-\frac{1}{3}a^{2}-6a+1\right){x}^{2}+\left(\frac{14}{3}a^{3}-\frac{1}{3}a^{2}-38a-9\right){x}+4a^{3}-32a-9\)
sage: E = EllipticCurve([K([1,0,0,0]),K([1,-6,-1/3,2/3]),K([1,0,0,0]),K([-9,-38,-1/3,14/3]),K([-9,-32,0,4])])
 
gp: E = ellinit([Polrev([1,0,0,0]),Polrev([1,-6,-1/3,2/3]),Polrev([1,0,0,0]),Polrev([-9,-38,-1/3,14/3]),Polrev([-9,-32,0,4])], K);
 
magma: E := EllipticCurve([K![1,0,0,0],K![1,-6,-1/3,2/3],K![1,0,0,0],K![-9,-38,-1/3,14/3],K![-9,-32,0,4]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2/3a^3-1/3a^2-4a+2)\) = \((-1/3a^3-1/3a^2+3a+2)^{2}\cdot(-1/3a^3-1/3a^2+2a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 63 \) = \(3^{2}\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((4a^3-4a^2-51a+33)\) = \((-1/3a^3-1/3a^2+3a+2)^{12}\cdot(-1/3a^3-1/3a^2+2a)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -3720087 \) = \(-3^{12}\cdot7\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{3858185}{189} a^{3} + \frac{5279251}{63} a^{2} - \frac{2609822}{63} a - \frac{4497131}{189} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{2}{3} a^{3} + \frac{1}{3} a^{2} + 7 a + 3 : -a^{3} - 2 a^{2} + 3 a + 3 : 1\right)$
Height \(0.44164900138240447314590050020391594409\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-1 : 0 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.44164900138240447314590050020391594409 \)
Period: \( 393.52455937478653755700232317705709337 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 2.46897282016393 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-1/3a^3-1/3a^2+3a+2)\) \(3\) \(2\) \(I_{6}^{*}\) Additive \(-1\) \(2\) \(12\) \(6\)
\((-1/3a^3-1/3a^2+2a)\) \(7\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 63.1-c consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.