Properties

Label 4.4.18496.1-8.3-b6
Base field \(\Q(\sqrt{2}, \sqrt{17})\)
Conductor norm \( 8 \)
CM no
Base change yes
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{2}, \sqrt{17})\)

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 11 x^{2} + 12 x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 12, -11, -2, 1]))
 
gp: K = nfinit(Polrev([2, 12, -11, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 12, -11, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(-\frac{2}{9}a^{3}+\frac{1}{3}a^{2}+\frac{28}{9}a-\frac{10}{9}\right){x}{y}+\left(-\frac{1}{9}a^{3}+\frac{2}{3}a^{2}+\frac{14}{9}a-\frac{32}{9}\right){y}={x}^{3}+\left(-\frac{5}{9}a^{3}+\frac{1}{3}a^{2}+\frac{61}{9}a+\frac{11}{9}\right){x}^{2}+\left(-\frac{1}{3}a^{3}-11a^{2}+\frac{128}{3}a+\frac{7}{3}\right){x}+\frac{140}{9}a^{3}-\frac{178}{3}a^{2}+\frac{677}{9}a+\frac{70}{9}\)
sage: E = EllipticCurve([K([-10/9,28/9,1/3,-2/9]),K([11/9,61/9,1/3,-5/9]),K([-32/9,14/9,2/3,-1/9]),K([7/3,128/3,-11,-1/3]),K([70/9,677/9,-178/3,140/9])])
 
gp: E = ellinit([Polrev([-10/9,28/9,1/3,-2/9]),Polrev([11/9,61/9,1/3,-5/9]),Polrev([-32/9,14/9,2/3,-1/9]),Polrev([7/3,128/3,-11,-1/3]),Polrev([70/9,677/9,-178/3,140/9])], K);
 
magma: E := EllipticCurve([K![-10/9,28/9,1/3,-2/9],K![11/9,61/9,1/3,-5/9],K![-32/9,14/9,2/3,-1/9],K![7/3,128/3,-11,-1/3],K![70/9,677/9,-178/3,140/9]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2/3a^3-a^2-22/3a+10/3)\) = \((7/9a^3-5/3a^2-71/9a+80/9)^{3}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 8 \) = \(2^{3}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-2/9a^3+1/3a^2+28/9a+26/9)\) = \((7/9a^3-5/3a^2-71/9a+80/9)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 256 \) = \(2^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{15319210}{9} a^{3} - \frac{7659605}{3} a^{2} - \frac{214468940}{9} a + \frac{253180334}{9} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{1}{6} a^{3} - \frac{3}{4} a^{2} - \frac{4}{3} a - \frac{7}{6} : -\frac{1}{12} a^{3} - \frac{1}{8} a^{2} + \frac{19}{6} a + \frac{19}{12} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 289.04308712620672804271601551526200506 \)
Tamagawa product: \( 4 \)
Torsion order: \(2\)
Leading coefficient: \( 2.12531681710446 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((7/9a^3-5/3a^2-71/9a+80/9)\) \(2\) \(4\) \(I_{1}^{*}\) Additive \(1\) \(3\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 8.3-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q(\sqrt{17}) \) 2.2.17.1-64.6-a5
\(\Q(\sqrt{17}) \) 2.2.17.1-512.4-e5