Properties

Label 4.4.17428.1-4.2-c1
Base field 4.4.17428.1
Conductor norm \( 4 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.17428.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 6 x^{2} + 4 x + 6 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([6, 4, -6, -1, 1]))
 
gp: K = nfinit(Polrev([6, 4, -6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![6, 4, -6, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}+a^{2}-4a-3\right){x}{y}+\left(a^{3}-4a\right){y}={x}^{3}+\left(a^{3}-a^{2}-5a+1\right){x}^{2}+\left(125a^{3}+180a^{2}-346a-357\right){x}+7601a^{3}+10450a^{2}-20942a-19415\)
sage: E = EllipticCurve([K([-3,-4,1,1]),K([1,-5,-1,1]),K([0,-4,0,1]),K([-357,-346,180,125]),K([-19415,-20942,10450,7601])])
 
gp: E = ellinit([Polrev([-3,-4,1,1]),Polrev([1,-5,-1,1]),Polrev([0,-4,0,1]),Polrev([-357,-346,180,125]),Polrev([-19415,-20942,10450,7601])], K);
 
magma: E := EllipticCurve([K![-3,-4,1,1],K![1,-5,-1,1],K![0,-4,0,1],K![-357,-346,180,125],K![-19415,-20942,10450,7601]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-a-2)\) = \((a^3+a^2-3a-2)\cdot(-a^2+2a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 4 \) = \(2\cdot2\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((32768a^2-16384a-81920)\) = \((a^3+a^2-3a-2)^{42}\cdot(-a^2+2a+1)^{21}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -9223372036854775808 \) = \(-2^{42}\cdot2^{21}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{10495049249}{2097152} a^{3} - \frac{520166291}{524288} a^{2} + \frac{27328674037}{1048576} a + \frac{10950681647}{1048576} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{9}{4} a^{3} - 5 a^{2} + \frac{9}{2} a + \frac{23}{2} : \frac{75}{8} a^{3} + \frac{27}{2} a^{2} - \frac{103}{4} a - \frac{105}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 8.6405914662029696245130537416369278238 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 0.294531812505927 \)
Analytic order of Ш: \( 9 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3+a^2-3a-2)\) \(2\) \(2\) \(I_{42}\) Non-split multiplicative \(1\) \(1\) \(42\) \(42\)
\((-a^2+2a+1)\) \(2\) \(1\) \(I_{21}\) Non-split multiplicative \(1\) \(1\) \(21\) \(21\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 4.2-c consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.