Properties

Label 4.4.16317.1-35.2-b1
Base field 4.4.16317.1
Conductor norm \( 35 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.16317.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 4 x^{2} + 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 5, -4, -2, 1]))
 
gp: K = nfinit(Polrev([1, 5, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 5, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a^{3}-a^{2}-4a+2\right){y}={x}^{3}+\left(-a^{3}+2a^{2}+4a-5\right){x}^{2}+\left(3a^{3}-7a^{2}-11a+18\right){x}-12a^{3}+26a^{2}+43a-68\)
sage: E = EllipticCurve([K([1,1,0,0]),K([-5,4,2,-1]),K([2,-4,-1,1]),K([18,-11,-7,3]),K([-68,43,26,-12])])
 
gp: E = ellinit([Polrev([1,1,0,0]),Polrev([-5,4,2,-1]),Polrev([2,-4,-1,1]),Polrev([18,-11,-7,3]),Polrev([-68,43,26,-12])], K);
 
magma: E := EllipticCurve([K![1,1,0,0],K![-5,4,2,-1],K![2,-4,-1,1],K![18,-11,-7,3],K![-68,43,26,-12]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+a^2+5a-2)\) = \((a+1)\cdot(-a^3+2a^2+3a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 35 \) = \(5\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-3a^3+4a^2+12a+5)\) = \((a+1)^{4}\cdot(-a^3+2a^2+3a-3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 4375 \) = \(5^{4}\cdot7\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1323075862}{4375} a^{3} - \frac{1061976641}{4375} a^{2} - \frac{6527302567}{4375} a - \frac{1115839118}{4375} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(2\)
Generators $\left(\frac{7}{3} a^{3} - \frac{16}{3} a^{2} - \frac{25}{3} a + \frac{41}{3} : -\frac{82}{9} a^{3} + \frac{59}{3} a^{2} + \frac{299}{9} a - \frac{458}{9} : 1\right)$ $\left(a^{3} - 2 a^{2} - 4 a + 4 : -a^{3} + 2 a^{2} + 4 a - 5 : 1\right)$
Heights \(0.66909682246886232424290586682920941718\) \(0.31686156707864516186584743729838131270\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(2\)
Regulator: \( 0.017720437168688465500687502047147493916 \)
Period: \( 1208.2523383639373322575618761620061852 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 5.36366811919881 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+1)\) \(5\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\((-a^3+2a^2+3a-3)\) \(7\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 35.2-b consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.