1.1-a1
1.1-a
8 8 8
42 42 4 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
1.1
1 1 1
1 1 1
3.57436 3.57436 3 . 5 7 4 3 6
none \textsf{none} none
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 , 7 2, 3, 7 2 , 3 , 7
2B , 3B , 7B.1.3
49 49 4 9
1 1 1
1 1 1
0.925503519 0.925503519 0 . 9 2 5 5 0 3 5 1 9
0.283435452
− 4572291148814851641920 a 3 + 10462525154672292268320 a 2 + 3492919624948937785472 a − 7992658002021083838208 -4572291148814851641920 a^{3} + 10462525154672292268320 a^{2} + 3492919624948937785472 a - 7992658002021083838208 − 4 5 7 2 2 9 1 1 4 8 8 1 4 8 5 1 6 4 1 9 2 0 a 3 + 1 0 4 6 2 5 2 5 1 5 4 6 7 2 2 9 2 2 6 8 3 2 0 a 2 + 3 4 9 2 9 1 9 6 2 4 9 4 8 9 3 7 7 8 5 4 7 2 a − 7 9 9 2 6 5 8 0 0 2 0 2 1 0 8 3 8 3 8 2 0 8
[ 1 2 a 3 − a \bigl[\frac{1}{2} a^{3} - a [ 2 1 a 3 − a , − a − 1 -a - 1 − a − 1 , 1 2 a 3 + 1 2 a 2 − 2 a − 1 \frac{1}{2} a^{3} + \frac{1}{2} a^{2} - 2 a - 1 2 1 a 3 + 2 1 a 2 − 2 a − 1 , 85 2 a 3 + 51 2 a 2 − 284 a − 304 \frac{85}{2} a^{3} + \frac{51}{2} a^{2} - 284 a - 304 2 8 5 a 3 + 2 5 1 a 2 − 2 8 4 a − 3 0 4 , 951 2 a 3 + 589 2 a 2 − 2911 a − 2650 ] \frac{951}{2} a^{3} + \frac{589}{2} a^{2} - 2911 a - 2650\bigr] 2 9 5 1 a 3 + 2 5 8 9 a 2 − 2 9 1 1 a − 2 6 5 0 ]
y 2 + ( 1 2 a 3 − a ) x y + ( 1 2 a 3 + 1 2 a 2 − 2 a − 1 ) y = x 3 + ( − a − 1 ) x 2 + ( 85 2 a 3 + 51 2 a 2 − 284 a − 304 ) x + 951 2 a 3 + 589 2 a 2 − 2911 a − 2650 {y}^2+\left(\frac{1}{2}a^{3}-a\right){x}{y}+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-2a-1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(\frac{85}{2}a^{3}+\frac{51}{2}a^{2}-284a-304\right){x}+\frac{951}{2}a^{3}+\frac{589}{2}a^{2}-2911a-2650 y 2 + ( 2 1 a 3 − a ) x y + ( 2 1 a 3 + 2 1 a 2 − 2 a − 1 ) y = x 3 + ( − a − 1 ) x 2 + ( 2 8 5 a 3 + 2 5 1 a 2 − 2 8 4 a − 3 0 4 ) x + 2 9 5 1 a 3 + 2 5 8 9 a 2 − 2 9 1 1 a − 2 6 5 0
1.1-a2
1.1-a
8 8 8
42 42 4 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
1.1
1 1 1
1 1 1
3.57436 3.57436 3 . 5 7 4 3 6
none \textsf{none} none
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 , 7 2, 3, 7 2 , 3 , 7
2B , 3B , 7B.1.3
49 49 4 9
1 1 1
1 1 1
0.925503519 0.925503519 0 . 9 2 5 5 0 3 5 1 9
0.283435452
4572291148814851641920 a 3 + 10462525154672292268320 a 2 − 3492919624948937785472 a − 7992658002021083838208 4572291148814851641920 a^{3} + 10462525154672292268320 a^{2} - 3492919624948937785472 a - 7992658002021083838208 4 5 7 2 2 9 1 1 4 8 8 1 4 8 5 1 6 4 1 9 2 0 a 3 + 1 0 4 6 2 5 2 5 1 5 4 6 7 2 2 9 2 2 6 8 3 2 0 a 2 − 3 4 9 2 9 1 9 6 2 4 9 4 8 9 3 7 7 8 5 4 7 2 a − 7 9 9 2 6 5 8 0 0 2 0 2 1 0 8 3 8 3 8 2 0 8
[ 1 2 a 3 − a \bigl[\frac{1}{2} a^{3} - a [ 2 1 a 3 − a , a − 1 a - 1 a − 1 , 1 2 a 3 + 1 2 a 2 − 2 a − 1 \frac{1}{2} a^{3} + \frac{1}{2} a^{2} - 2 a - 1 2 1 a 3 + 2 1 a 2 − 2 a − 1 , − 43 a 3 + 51 2 a 2 + 284 a − 304 -43 a^{3} + \frac{51}{2} a^{2} + 284 a - 304 − 4 3 a 3 + 2 5 1 a 2 + 2 8 4 a − 3 0 4 , − 951 2 a 3 + 589 2 a 2 + 2910 a − 2650 ] -\frac{951}{2} a^{3} + \frac{589}{2} a^{2} + 2910 a - 2650\bigr] − 2 9 5 1 a 3 + 2 5 8 9 a 2 + 2 9 1 0 a − 2 6 5 0 ]
y 2 + ( 1 2 a 3 − a ) x y + ( 1 2 a 3 + 1 2 a 2 − 2 a − 1 ) y = x 3 + ( a − 1 ) x 2 + ( − 43 a 3 + 51 2 a 2 + 284 a − 304 ) x − 951 2 a 3 + 589 2 a 2 + 2910 a − 2650 {y}^2+\left(\frac{1}{2}a^{3}-a\right){x}{y}+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-2a-1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-43a^{3}+\frac{51}{2}a^{2}+284a-304\right){x}-\frac{951}{2}a^{3}+\frac{589}{2}a^{2}+2910a-2650 y 2 + ( 2 1 a 3 − a ) x y + ( 2 1 a 3 + 2 1 a 2 − 2 a − 1 ) y = x 3 + ( a − 1 ) x 2 + ( − 4 3 a 3 + 2 5 1 a 2 + 2 8 4 a − 3 0 4 ) x − 2 9 5 1 a 3 + 2 5 8 9 a 2 + 2 9 1 0 a − 2 6 5 0
1.1-a3
1.1-a
8 8 8
42 42 4 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
1.1
1 1 1
1 1 1
3.57436 3.57436 3 . 5 7 4 3 6
none \textsf{none} none
0
Z / 14 Z \Z/14\Z Z / 1 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 , 7 2, 3, 7 2 , 3 , 7
2B , 3B , 7B.1.1
1 1 1
1 1 1
1 1 1
2222.133950 2222.133950 2 2 2 2 . 1 3 3 9 5 0
0.283435452
820352 a 3 − 717600 a 2 − 4294784 a + 3756992 820352 a^{3} - 717600 a^{2} - 4294784 a + 3756992 8 2 0 3 5 2 a 3 − 7 1 7 6 0 0 a 2 − 4 2 9 4 7 8 4 a + 3 7 5 6 9 9 2
[ 1 2 a 3 − a \bigl[\frac{1}{2} a^{3} - a [ 2 1 a 3 − a , 1 2 a 3 − 2 a \frac{1}{2} a^{3} - 2 a 2 1 a 3 − 2 a , 1 2 a 3 + 1 2 a 2 − a \frac{1}{2} a^{3} + \frac{1}{2} a^{2} - a 2 1 a 3 + 2 1 a 2 − a , 1 2 a 2 + a − 1 \frac{1}{2} a^{2} + a - 1 2 1 a 2 + a − 1 , 0 ] 0\bigr] 0 ]
y 2 + ( 1 2 a 3 − a ) x y + ( 1 2 a 3 + 1 2 a 2 − a ) y = x 3 + ( 1 2 a 3 − 2 a ) x 2 + ( 1 2 a 2 + a − 1 ) x {y}^2+\left(\frac{1}{2}a^{3}-a\right){x}{y}+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-a\right){y}={x}^{3}+\left(\frac{1}{2}a^{3}-2a\right){x}^{2}+\left(\frac{1}{2}a^{2}+a-1\right){x} y 2 + ( 2 1 a 3 − a ) x y + ( 2 1 a 3 + 2 1 a 2 − a ) y = x 3 + ( 2 1 a 3 − 2 a ) x 2 + ( 2 1 a 2 + a − 1 ) x
1.1-a4
1.1-a
8 8 8
42 42 4 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
1.1
1 1 1
1 1 1
3.57436 3.57436 3 . 5 7 4 3 6
none \textsf{none} none
0
Z / 14 Z \Z/14\Z Z / 1 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 , 7 2, 3, 7 2 , 3 , 7
2B , 3B , 7B.1.1
1 1 1
1 1 1
1 1 1
2222.133950 2222.133950 2 2 2 2 . 1 3 3 9 5 0
0.283435452
− 820352 a 3 − 717600 a 2 + 4294784 a + 3756992 -820352 a^{3} - 717600 a^{2} + 4294784 a + 3756992 − 8 2 0 3 5 2 a 3 − 7 1 7 6 0 0 a 2 + 4 2 9 4 7 8 4 a + 3 7 5 6 9 9 2
[ 1 2 a 3 − a \bigl[\frac{1}{2} a^{3} - a [ 2 1 a 3 − a , − 1 2 a 3 + 2 a -\frac{1}{2} a^{3} + 2 a − 2 1 a 3 + 2 a , 1 2 a 3 + 1 2 a 2 − a \frac{1}{2} a^{3} + \frac{1}{2} a^{2} - a 2 1 a 3 + 2 1 a 2 − a , − a 3 + 1 2 a 2 − 1 -a^{3} + \frac{1}{2} a^{2} - 1 − a 3 + 2 1 a 2 − 1 , − a 3 + a ] -a^{3} + a\bigr] − a 3 + a ]
y 2 + ( 1 2 a 3 − a ) x y + ( 1 2 a 3 + 1 2 a 2 − a ) y = x 3 + ( − 1 2 a 3 + 2 a ) x 2 + ( − a 3 + 1 2 a 2 − 1 ) x − a 3 + a {y}^2+\left(\frac{1}{2}a^{3}-a\right){x}{y}+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-a\right){y}={x}^{3}+\left(-\frac{1}{2}a^{3}+2a\right){x}^{2}+\left(-a^{3}+\frac{1}{2}a^{2}-1\right){x}-a^{3}+a y 2 + ( 2 1 a 3 − a ) x y + ( 2 1 a 3 + 2 1 a 2 − a ) y = x 3 + ( − 2 1 a 3 + 2 a ) x 2 + ( − a 3 + 2 1 a 2 − 1 ) x − a 3 + a
1.1-a5
1.1-a
8 8 8
42 42 4 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
1.1
1 1 1
1 1 1
3.57436 3.57436 3 . 5 7 4 3 6
none \textsf{none} none
0
Z / 14 Z \Z/14\Z Z / 1 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 , 7 2, 3, 7 2 , 3 , 7
2B , 3B , 7B.1.1
1 1 1
1 1 1
1 1 1
2222.133950 2222.133950 2 2 2 2 . 1 3 3 9 5 0
0.283435452
313664 a 3 + 717600 a 2 − 241280 a − 548608 313664 a^{3} + 717600 a^{2} - 241280 a - 548608 3 1 3 6 6 4 a 3 + 7 1 7 6 0 0 a 2 − 2 4 1 2 8 0 a − 5 4 8 6 0 8
[ a \bigl[a [ a , 1 2 a 3 + 1 2 a 2 − 2 a − 1 \frac{1}{2} a^{3} + \frac{1}{2} a^{2} - 2 a - 1 2 1 a 3 + 2 1 a 2 − 2 a − 1 , 1 2 a 2 + a − 1 \frac{1}{2} a^{2} + a - 1 2 1 a 2 + a − 1 , 1 2 a 3 − a 2 + 1 \frac{1}{2} a^{3} - a^{2} + 1 2 1 a 3 − a 2 + 1 , 1 2 a 3 − 3 2 a 2 + 1 ] \frac{1}{2} a^{3} - \frac{3}{2} a^{2} + 1\bigr] 2 1 a 3 − 2 3 a 2 + 1 ]
y 2 + a x y + ( 1 2 a 2 + a − 1 ) y = x 3 + ( 1 2 a 3 + 1 2 a 2 − 2 a − 1 ) x 2 + ( 1 2 a 3 − a 2 + 1 ) x + 1 2 a 3 − 3 2 a 2 + 1 {y}^2+a{x}{y}+\left(\frac{1}{2}a^{2}+a-1\right){y}={x}^{3}+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-2a-1\right){x}^{2}+\left(\frac{1}{2}a^{3}-a^{2}+1\right){x}+\frac{1}{2}a^{3}-\frac{3}{2}a^{2}+1 y 2 + a x y + ( 2 1 a 2 + a − 1 ) y = x 3 + ( 2 1 a 3 + 2 1 a 2 − 2 a − 1 ) x 2 + ( 2 1 a 3 − a 2 + 1 ) x + 2 1 a 3 − 2 3 a 2 + 1
1.1-a6
1.1-a
8 8 8
42 42 4 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
1.1
1 1 1
1 1 1
3.57436 3.57436 3 . 5 7 4 3 6
none \textsf{none} none
0
Z / 14 Z \Z/14\Z Z / 1 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 , 7 2, 3, 7 2 , 3 , 7
2B , 3B , 7B.1.1
1 1 1
1 1 1
1 1 1
2222.133950 2222.133950 2 2 2 2 . 1 3 3 9 5 0
0.283435452
− 313664 a 3 + 717600 a 2 + 241280 a − 548608 -313664 a^{3} + 717600 a^{2} + 241280 a - 548608 − 3 1 3 6 6 4 a 3 + 7 1 7 6 0 0 a 2 + 2 4 1 2 8 0 a − 5 4 8 6 0 8
[ a \bigl[a [ a , − 1 2 a 3 + 1 2 a 2 + 2 a − 1 -\frac{1}{2} a^{3} + \frac{1}{2} a^{2} + 2 a - 1 − 2 1 a 3 + 2 1 a 2 + 2 a − 1 , 1 2 a 2 + a − 1 \frac{1}{2} a^{2} + a - 1 2 1 a 2 + a − 1 , − a 3 − a 2 + a + 1 -a^{3} - a^{2} + a + 1 − a 3 − a 2 + a + 1 , − a 3 − 3 2 a 2 + a + 1 ] -a^{3} - \frac{3}{2} a^{2} + a + 1\bigr] − a 3 − 2 3 a 2 + a + 1 ]
y 2 + a x y + ( 1 2 a 2 + a − 1 ) y = x 3 + ( − 1 2 a 3 + 1 2 a 2 + 2 a − 1 ) x 2 + ( − a 3 − a 2 + a + 1 ) x − a 3 − 3 2 a 2 + a + 1 {y}^2+a{x}{y}+\left(\frac{1}{2}a^{2}+a-1\right){y}={x}^{3}+\left(-\frac{1}{2}a^{3}+\frac{1}{2}a^{2}+2a-1\right){x}^{2}+\left(-a^{3}-a^{2}+a+1\right){x}-a^{3}-\frac{3}{2}a^{2}+a+1 y 2 + a x y + ( 2 1 a 2 + a − 1 ) y = x 3 + ( − 2 1 a 3 + 2 1 a 2 + 2 a − 1 ) x 2 + ( − a 3 − a 2 + a + 1 ) x − a 3 − 2 3 a 2 + a + 1
1.1-a7
1.1-a
8 8 8
42 42 4 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
1.1
1 1 1
1 1 1
3.57436 3.57436 3 . 5 7 4 3 6
none \textsf{none} none
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 , 7 2, 3, 7 2 , 3 , 7
2B , 3B , 7B.1.3
49 49 4 9
1 1 1
1 1 1
0.925503519 0.925503519 0 . 9 2 5 5 0 3 5 1 9
0.283435452
11970413633970086033024 a 3 − 10462525154672292268320 a 2 − 62677899506190812914304 a + 54782492926012669771712 11970413633970086033024 a^{3} - 10462525154672292268320 a^{2} - 62677899506190812914304 a + 54782492926012669771712 1 1 9 7 0 4 1 3 6 3 3 9 7 0 0 8 6 0 3 3 0 2 4 a 3 − 1 0 4 6 2 5 2 5 1 5 4 6 7 2 2 9 2 2 6 8 3 2 0 a 2 − 6 2 6 7 7 8 9 9 5 0 6 1 9 0 8 1 2 9 1 4 3 0 4 a + 5 4 7 8 2 4 9 2 9 2 6 0 1 2 6 6 9 7 7 1 7 1 2
[ a \bigl[a [ a , 1 2 a 3 + 1 2 a 2 − 3 a \frac{1}{2} a^{3} + \frac{1}{2} a^{2} - 3 a 2 1 a 3 + 2 1 a 2 − 3 a , 1 2 a 2 + a \frac{1}{2} a^{2} + a 2 1 a 2 + a , 25 2 a 3 − 25 a 2 − 164 a − 151 \frac{25}{2} a^{3} - 25 a^{2} - 164 a - 151 2 2 5 a 3 − 2 5 a 2 − 1 6 4 a − 1 5 1 , − 28 a 3 − 421 a 2 − 984 a − 681 ] -28 a^{3} - 421 a^{2} - 984 a - 681\bigr] − 2 8 a 3 − 4 2 1 a 2 − 9 8 4 a − 6 8 1 ]
y 2 + a x y + ( 1 2 a 2 + a ) y = x 3 + ( 1 2 a 3 + 1 2 a 2 − 3 a ) x 2 + ( 25 2 a 3 − 25 a 2 − 164 a − 151 ) x − 28 a 3 − 421 a 2 − 984 a − 681 {y}^2+a{x}{y}+\left(\frac{1}{2}a^{2}+a\right){y}={x}^{3}+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-3a\right){x}^{2}+\left(\frac{25}{2}a^{3}-25a^{2}-164a-151\right){x}-28a^{3}-421a^{2}-984a-681 y 2 + a x y + ( 2 1 a 2 + a ) y = x 3 + ( 2 1 a 3 + 2 1 a 2 − 3 a ) x 2 + ( 2 2 5 a 3 − 2 5 a 2 − 1 6 4 a − 1 5 1 ) x − 2 8 a 3 − 4 2 1 a 2 − 9 8 4 a − 6 8 1
1.1-a8
1.1-a
8 8 8
42 42 4 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
1.1
1 1 1
1 1 1
3.57436 3.57436 3 . 5 7 4 3 6
none \textsf{none} none
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 , 7 2, 3, 7 2 , 3 , 7
2B , 3B , 7B.1.3
49 49 4 9
1 1 1
1 1 1
0.925503519 0.925503519 0 . 9 2 5 5 0 3 5 1 9
0.283435452
− 11970413633970086033024 a 3 − 10462525154672292268320 a 2 + 62677899506190812914304 a + 54782492926012669771712 -11970413633970086033024 a^{3} - 10462525154672292268320 a^{2} + 62677899506190812914304 a + 54782492926012669771712 − 1 1 9 7 0 4 1 3 6 3 3 9 7 0 0 8 6 0 3 3 0 2 4 a 3 − 1 0 4 6 2 5 2 5 1 5 4 6 7 2 2 9 2 2 6 8 3 2 0 a 2 + 6 2 6 7 7 8 9 9 5 0 6 1 9 0 8 1 2 9 1 4 3 0 4 a + 5 4 7 8 2 4 9 2 9 2 6 0 1 2 6 6 9 7 7 1 7 1 2
[ a \bigl[a [ a , − 1 2 a 3 + 1 2 a 2 + 3 a -\frac{1}{2} a^{3} + \frac{1}{2} a^{2} + 3 a − 2 1 a 3 + 2 1 a 2 + 3 a , 1 2 a 2 + a \frac{1}{2} a^{2} + a 2 1 a 2 + a , − 13 a 3 − 25 a 2 + 164 a − 151 -13 a^{3} - 25 a^{2} + 164 a - 151 − 1 3 a 3 − 2 5 a 2 + 1 6 4 a − 1 5 1 , 55 2 a 3 − 421 a 2 + 984 a − 681 ] \frac{55}{2} a^{3} - 421 a^{2} + 984 a - 681\bigr] 2 5 5 a 3 − 4 2 1 a 2 + 9 8 4 a − 6 8 1 ]
y 2 + a x y + ( 1 2 a 2 + a ) y = x 3 + ( − 1 2 a 3 + 1 2 a 2 + 3 a ) x 2 + ( − 13 a 3 − 25 a 2 + 164 a − 151 ) x + 55 2 a 3 − 421 a 2 + 984 a − 681 {y}^2+a{x}{y}+\left(\frac{1}{2}a^{2}+a\right){y}={x}^{3}+\left(-\frac{1}{2}a^{3}+\frac{1}{2}a^{2}+3a\right){x}^{2}+\left(-13a^{3}-25a^{2}+164a-151\right){x}+\frac{55}{2}a^{3}-421a^{2}+984a-681 y 2 + a x y + ( 2 1 a 2 + a ) y = x 3 + ( − 2 1 a 3 + 2 1 a 2 + 3 a ) x 2 + ( − 1 3 a 3 − 2 5 a 2 + 1 6 4 a − 1 5 1 ) x + 2 5 5 a 3 − 4 2 1 a 2 + 9 8 4 a − 6 8 1
16.1-a1
16.1-a
12 12 1 2
24 24 2 4
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
16.1
2 4 2^{4} 2 4
2 16 2^{16} 2 1 6
5.05491 5.05491 5 . 0 5 4 9 1
( 1 / 2 a 3 − 2 a ) (1/2a^3-2a) ( 1 / 2 a 3 − 2 a )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
533.1660961 533.1660961 5 3 3 . 1 6 6 0 9 6 1
0.833072025
− 1153708403565030 a 3 − 1008378119767100 a 2 + 6040895627231640 a + 5279936382223900 -1153708403565030 a^{3} - 1008378119767100 a^{2} + 6040895627231640 a + 5279936382223900 − 1 1 5 3 7 0 8 4 0 3 5 6 5 0 3 0 a 3 − 1 0 0 8 3 7 8 1 1 9 7 6 7 1 0 0 a 2 + 6 0 4 0 8 9 5 6 2 7 2 3 1 6 4 0 a + 5 2 7 9 9 3 6 3 8 2 2 2 3 9 0 0
[ 1 2 a 3 − 2 a \bigl[\frac{1}{2} a^{3} - 2 a [ 2 1 a 3 − 2 a , 1 2 a 3 + 1 2 a 2 − a − 2 \frac{1}{2} a^{3} + \frac{1}{2} a^{2} - a - 2 2 1 a 3 + 2 1 a 2 − a − 2 , 0 0 0 , 14 a 3 − 12 a 2 − 72 a + 60 14 a^{3} - 12 a^{2} - 72 a + 60 1 4 a 3 − 1 2 a 2 − 7 2 a + 6 0 , − 9 a 3 + 8 a 2 + 44 a − 34 ] -9 a^{3} + 8 a^{2} + 44 a - 34\bigr] − 9 a 3 + 8 a 2 + 4 4 a − 3 4 ]
y 2 + ( 1 2 a 3 − 2 a ) x y = x 3 + ( 1 2 a 3 + 1 2 a 2 − a − 2 ) x 2 + ( 14 a 3 − 12 a 2 − 72 a + 60 ) x − 9 a 3 + 8 a 2 + 44 a − 34 {y}^2+\left(\frac{1}{2}a^{3}-2a\right){x}{y}={x}^{3}+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-a-2\right){x}^{2}+\left(14a^{3}-12a^{2}-72a+60\right){x}-9a^{3}+8a^{2}+44a-34 y 2 + ( 2 1 a 3 − 2 a ) x y = x 3 + ( 2 1 a 3 + 2 1 a 2 − a − 2 ) x 2 + ( 1 4 a 3 − 1 2 a 2 − 7 2 a + 6 0 ) x − 9 a 3 + 8 a 2 + 4 4 a − 3 4
16.1-a2
16.1-a
12 12 1 2
24 24 2 4
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
16.1
2 4 2^{4} 2 4
2 16 2^{16} 2 1 6
5.05491 5.05491 5 . 0 5 4 9 1
( 1 / 2 a 3 − 2 a ) (1/2a^3-2a) ( 1 / 2 a 3 − 2 a )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
533.1660961 533.1660961 5 3 3 . 1 6 6 0 9 6 1
0.833072025
1153708403565030 a 3 − 1008378119767100 a 2 − 6040895627231640 a + 5279936382223900 1153708403565030 a^{3} - 1008378119767100 a^{2} - 6040895627231640 a + 5279936382223900 1 1 5 3 7 0 8 4 0 3 5 6 5 0 3 0 a 3 − 1 0 0 8 3 7 8 1 1 9 7 6 7 1 0 0 a 2 − 6 0 4 0 8 9 5 6 2 7 2 3 1 6 4 0 a + 5 2 7 9 9 3 6 3 8 2 2 2 3 9 0 0
[ 1 2 a 3 − 2 a \bigl[\frac{1}{2} a^{3} - 2 a [ 2 1 a 3 − 2 a , − 1 2 a 3 + 1 2 a 2 + a − 2 -\frac{1}{2} a^{3} + \frac{1}{2} a^{2} + a - 2 − 2 1 a 3 + 2 1 a 2 + a − 2 , 0 0 0 , − 14 a 3 − 12 a 2 + 72 a + 60 -14 a^{3} - 12 a^{2} + 72 a + 60 − 1 4 a 3 − 1 2 a 2 + 7 2 a + 6 0 , 9 a 3 + 8 a 2 − 44 a − 34 ] 9 a^{3} + 8 a^{2} - 44 a - 34\bigr] 9 a 3 + 8 a 2 − 4 4 a − 3 4 ]
y 2 + ( 1 2 a 3 − 2 a ) x y = x 3 + ( − 1 2 a 3 + 1 2 a 2 + a − 2 ) x 2 + ( − 14 a 3 − 12 a 2 + 72 a + 60 ) x + 9 a 3 + 8 a 2 − 44 a − 34 {y}^2+\left(\frac{1}{2}a^{3}-2a\right){x}{y}={x}^{3}+\left(-\frac{1}{2}a^{3}+\frac{1}{2}a^{2}+a-2\right){x}^{2}+\left(-14a^{3}-12a^{2}+72a+60\right){x}+9a^{3}+8a^{2}-44a-34 y 2 + ( 2 1 a 3 − 2 a ) x y = x 3 + ( − 2 1 a 3 + 2 1 a 2 + a − 2 ) x 2 + ( − 1 4 a 3 − 1 2 a 2 + 7 2 a + 6 0 ) x + 9 a 3 + 8 a 2 − 4 4 a − 3 4
16.1-a3
16.1-a
12 12 1 2
24 24 2 4
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
16.1
2 4 2^{4} 2 4
2 8 2^{8} 2 8
5.05491 5.05491 5 . 0 5 4 9 1
( 1 / 2 a 3 − 2 a ) (1/2a^3-2a) ( 1 / 2 a 3 − 2 a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
133.2915240 133.2915240 1 3 3 . 2 9 1 5 2 4 0
0.833072025
7753056320 a 3 + 17740898400 a 2 − 5922808160 a − 13552840400 7753056320 a^{3} + 17740898400 a^{2} - 5922808160 a - 13552840400 7 7 5 3 0 5 6 3 2 0 a 3 + 1 7 7 4 0 8 9 8 4 0 0 a 2 − 5 9 2 2 8 0 8 1 6 0 a − 1 3 5 5 2 8 4 0 4 0 0
[ 1 2 a 3 − 2 a \bigl[\frac{1}{2} a^{3} - 2 a [ 2 1 a 3 − 2 a , 1 2 a 3 − 3 a + 1 \frac{1}{2} a^{3} - 3 a + 1 2 1 a 3 − 3 a + 1 , 1 2 a 3 − 2 a \frac{1}{2} a^{3} - 2 a 2 1 a 3 − 2 a , 2 a 3 − 2 a 2 − 10 a + 8 2 a^{3} - 2 a^{2} - 10 a + 8 2 a 3 − 2 a 2 − 1 0 a + 8 , 15 2 a 3 − 7 a 2 − 38 a + 33 ] \frac{15}{2} a^{3} - 7 a^{2} - 38 a + 33\bigr] 2 1 5 a 3 − 7 a 2 − 3 8 a + 3 3 ]
y 2 + ( 1 2 a 3 − 2 a ) x y + ( 1 2 a 3 − 2 a ) y = x 3 + ( 1 2 a 3 − 3 a + 1 ) x 2 + ( 2 a 3 − 2 a 2 − 10 a + 8 ) x + 15 2 a 3 − 7 a 2 − 38 a + 33 {y}^2+\left(\frac{1}{2}a^{3}-2a\right){x}{y}+\left(\frac{1}{2}a^{3}-2a\right){y}={x}^{3}+\left(\frac{1}{2}a^{3}-3a+1\right){x}^{2}+\left(2a^{3}-2a^{2}-10a+8\right){x}+\frac{15}{2}a^{3}-7a^{2}-38a+33 y 2 + ( 2 1 a 3 − 2 a ) x y + ( 2 1 a 3 − 2 a ) y = x 3 + ( 2 1 a 3 − 3 a + 1 ) x 2 + ( 2 a 3 − 2 a 2 − 1 0 a + 8 ) x + 2 1 5 a 3 − 7 a 2 − 3 8 a + 3 3
16.1-a4
16.1-a
12 12 1 2
24 24 2 4
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
16.1
2 4 2^{4} 2 4
2 16 2^{16} 2 1 6
5.05491 5.05491 5 . 0 5 4 9 1
( 1 / 2 a 3 − 2 a ) (1/2a^3-2a) ( 1 / 2 a 3 − 2 a )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
533.1660961 533.1660961 5 3 3 . 1 6 6 0 9 6 1
0.833072025
440677397079270 a 3 + 1008378119767100 a 2 − 336647575345560 a − 770332336378700 440677397079270 a^{3} + 1008378119767100 a^{2} - 336647575345560 a - 770332336378700 4 4 0 6 7 7 3 9 7 0 7 9 2 7 0 a 3 + 1 0 0 8 3 7 8 1 1 9 7 6 7 1 0 0 a 2 − 3 3 6 6 4 7 5 7 5 3 4 5 5 6 0 a − 7 7 0 3 3 2 3 3 6 3 7 8 7 0 0
[ 1 2 a 3 − 2 a \bigl[\frac{1}{2} a^{3} - 2 a [ 2 1 a 3 − 2 a , 1 2 a 3 − 1 2 a 2 − a + 1 \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - a + 1 2 1 a 3 − 2 1 a 2 − a + 1 , 0 0 0 , − 11 2 a 3 + 14 a 2 + 4 a − 18 -\frac{11}{2} a^{3} + 14 a^{2} + 4 a - 18 − 2 1 1 a 3 + 1 4 a 2 + 4 a − 1 8 , 10 a 3 − 25 a 2 − 6 a + 25 ] 10 a^{3} - 25 a^{2} - 6 a + 25\bigr] 1 0 a 3 − 2 5 a 2 − 6 a + 2 5 ]
y 2 + ( 1 2 a 3 − 2 a ) x y = x 3 + ( 1 2 a 3 − 1 2 a 2 − a + 1 ) x 2 + ( − 11 2 a 3 + 14 a 2 + 4 a − 18 ) x + 10 a 3 − 25 a 2 − 6 a + 25 {y}^2+\left(\frac{1}{2}a^{3}-2a\right){x}{y}={x}^{3}+\left(\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-a+1\right){x}^{2}+\left(-\frac{11}{2}a^{3}+14a^{2}+4a-18\right){x}+10a^{3}-25a^{2}-6a+25 y 2 + ( 2 1 a 3 − 2 a ) x y = x 3 + ( 2 1 a 3 − 2 1 a 2 − a + 1 ) x 2 + ( − 2 1 1 a 3 + 1 4 a 2 + 4 a − 1 8 ) x + 1 0 a 3 − 2 5 a 2 − 6 a + 2 5
16.1-a5
16.1-a
12 12 1 2
24 24 2 4
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
16.1
2 4 2^{4} 2 4
2 8 2^{8} 2 8
5.05491 5.05491 5 . 0 5 4 9 1
( 1 / 2 a 3 − 2 a ) (1/2a^3-2a) ( 1 / 2 a 3 − 2 a )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2Cs , 3B
1 1 1
1 1 1
1 1 1
2132.664384 2132.664384 2 1 3 2 . 6 6 4 3 8 4
0.833072025
− 7507920 a 3 + 60063360 a + 47486000 -7507920 a^{3} + 60063360 a + 47486000 − 7 5 0 7 9 2 0 a 3 + 6 0 0 6 3 3 6 0 a + 4 7 4 8 6 0 0 0
[ 1 2 a 3 − 2 a \bigl[\frac{1}{2} a^{3} - 2 a [ 2 1 a 3 − 2 a , 1 2 a 3 − 1 2 a 2 − a + 1 \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - a + 1 2 1 a 3 − 2 1 a 2 − a + 1 , 0 0 0 , 2 a 3 − a 2 − 6 a − 3 2 a^{3} - a^{2} - 6 a - 3 2 a 3 − a 2 − 6 a − 3 , − 5 2 a 3 + 3 a 2 + 6 a + 1 ] -\frac{5}{2} a^{3} + 3 a^{2} + 6 a + 1\bigr] − 2 5 a 3 + 3 a 2 + 6 a + 1 ]
y 2 + ( 1 2 a 3 − 2 a ) x y = x 3 + ( 1 2 a 3 − 1 2 a 2 − a + 1 ) x 2 + ( 2 a 3 − a 2 − 6 a − 3 ) x − 5 2 a 3 + 3 a 2 + 6 a + 1 {y}^2+\left(\frac{1}{2}a^{3}-2a\right){x}{y}={x}^{3}+\left(\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-a+1\right){x}^{2}+\left(2a^{3}-a^{2}-6a-3\right){x}-\frac{5}{2}a^{3}+3a^{2}+6a+1 y 2 + ( 2 1 a 3 − 2 a ) x y = x 3 + ( 2 1 a 3 − 2 1 a 2 − a + 1 ) x 2 + ( 2 a 3 − a 2 − 6 a − 3 ) x − 2 5 a 3 + 3 a 2 + 6 a + 1
16.1-a6
16.1-a
12 12 1 2
24 24 2 4
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
16.1
2 4 2^{4} 2 4
2 8 2^{8} 2 8
5.05491 5.05491 5 . 0 5 4 9 1
( 1 / 2 a 3 − 2 a ) (1/2a^3-2a) ( 1 / 2 a 3 − 2 a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
133.2915240 133.2915240 1 3 3 . 2 9 1 5 2 4 0
0.833072025
− 20297764880 a 3 − 17740898400 a 2 + 106280476640 a + 92892550000 -20297764880 a^{3} - 17740898400 a^{2} + 106280476640 a + 92892550000 − 2 0 2 9 7 7 6 4 8 8 0 a 3 − 1 7 7 4 0 8 9 8 4 0 0 a 2 + 1 0 6 2 8 0 4 7 6 6 4 0 a + 9 2 8 9 2 5 5 0 0 0 0
[ 1 2 a 3 − 2 a \bigl[\frac{1}{2} a^{3} - 2 a [ 2 1 a 3 − 2 a , − a + 1 -a + 1 − a + 1 , 1 2 a 3 − 2 a \frac{1}{2} a^{3} - 2 a 2 1 a 3 − 2 a , − a 3 + 2 a 2 + 2 a − 4 -a^{3} + 2 a^{2} + 2 a - 4 − a 3 + 2 a 2 + 2 a − 4 , − 7 2 a 3 + 7 a 2 + 6 a − 9 ] -\frac{7}{2} a^{3} + 7 a^{2} + 6 a - 9\bigr] − 2 7 a 3 + 7 a 2 + 6 a − 9 ]
y 2 + ( 1 2 a 3 − 2 a ) x y + ( 1 2 a 3 − 2 a ) y = x 3 + ( − a + 1 ) x 2 + ( − a 3 + 2 a 2 + 2 a − 4 ) x − 7 2 a 3 + 7 a 2 + 6 a − 9 {y}^2+\left(\frac{1}{2}a^{3}-2a\right){x}{y}+\left(\frac{1}{2}a^{3}-2a\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-a^{3}+2a^{2}+2a-4\right){x}-\frac{7}{2}a^{3}+7a^{2}+6a-9 y 2 + ( 2 1 a 3 − 2 a ) x y + ( 2 1 a 3 − 2 a ) y = x 3 + ( − a + 1 ) x 2 + ( − a 3 + 2 a 2 + 2 a − 4 ) x − 2 7 a 3 + 7 a 2 + 6 a − 9
16.1-a7
16.1-a
12 12 1 2
24 24 2 4
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
16.1
2 4 2^{4} 2 4
2 16 2^{16} 2 1 6
5.05491 5.05491 5 . 0 5 4 9 1
( 1 / 2 a 3 − 2 a ) (1/2a^3-2a) ( 1 / 2 a 3 − 2 a )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
533.1660961 533.1660961 5 3 3 . 1 6 6 0 9 6 1
0.833072025
− 440677397079270 a 3 + 1008378119767100 a 2 + 336647575345560 a − 770332336378700 -440677397079270 a^{3} + 1008378119767100 a^{2} + 336647575345560 a - 770332336378700 − 4 4 0 6 7 7 3 9 7 0 7 9 2 7 0 a 3 + 1 0 0 8 3 7 8 1 1 9 7 6 7 1 0 0 a 2 + 3 3 6 6 4 7 5 7 5 3 4 5 5 6 0 a − 7 7 0 3 3 2 3 3 6 3 7 8 7 0 0
[ 1 2 a 3 − 2 a \bigl[\frac{1}{2} a^{3} - 2 a [ 2 1 a 3 − 2 a , − 1 2 a 3 − 1 2 a 2 + a + 1 -\frac{1}{2} a^{3} - \frac{1}{2} a^{2} + a + 1 − 2 1 a 3 − 2 1 a 2 + a + 1 , 0 0 0 , 11 2 a 3 + 14 a 2 − 4 a − 18 \frac{11}{2} a^{3} + 14 a^{2} - 4 a - 18 2 1 1 a 3 + 1 4 a 2 − 4 a − 1 8 , − 10 a 3 − 25 a 2 + 6 a + 25 ] -10 a^{3} - 25 a^{2} + 6 a + 25\bigr] − 1 0 a 3 − 2 5 a 2 + 6 a + 2 5 ]
y 2 + ( 1 2 a 3 − 2 a ) x y = x 3 + ( − 1 2 a 3 − 1 2 a 2 + a + 1 ) x 2 + ( 11 2 a 3 + 14 a 2 − 4 a − 18 ) x − 10 a 3 − 25 a 2 + 6 a + 25 {y}^2+\left(\frac{1}{2}a^{3}-2a\right){x}{y}={x}^{3}+\left(-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}+a+1\right){x}^{2}+\left(\frac{11}{2}a^{3}+14a^{2}-4a-18\right){x}-10a^{3}-25a^{2}+6a+25 y 2 + ( 2 1 a 3 − 2 a ) x y = x 3 + ( − 2 1 a 3 − 2 1 a 2 + a + 1 ) x 2 + ( 2 1 1 a 3 + 1 4 a 2 − 4 a − 1 8 ) x − 1 0 a 3 − 2 5 a 2 + 6 a + 2 5
16.1-a8
16.1-a
12 12 1 2
24 24 2 4
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
16.1
2 4 2^{4} 2 4
2 8 2^{8} 2 8
5.05491 5.05491 5 . 0 5 4 9 1
( 1 / 2 a 3 − 2 a ) (1/2a^3-2a) ( 1 / 2 a 3 − 2 a )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2Cs , 3B
1 1 1
1 1 1
1 1 1
2132.664384 2132.664384 2 1 3 2 . 6 6 4 3 8 4
0.833072025
7507920 a 3 − 60063360 a + 47486000 7507920 a^{3} - 60063360 a + 47486000 7 5 0 7 9 2 0 a 3 − 6 0 0 6 3 3 6 0 a + 4 7 4 8 6 0 0 0
[ 1 2 a 3 − 2 a \bigl[\frac{1}{2} a^{3} - 2 a [ 2 1 a 3 − 2 a , − 1 2 a 3 − 1 2 a 2 + a + 1 -\frac{1}{2} a^{3} - \frac{1}{2} a^{2} + a + 1 − 2 1 a 3 − 2 1 a 2 + a + 1 , 0 0 0 , − 2 a 3 − a 2 + 6 a − 3 -2 a^{3} - a^{2} + 6 a - 3 − 2 a 3 − a 2 + 6 a − 3 , 5 2 a 3 + 3 a 2 − 6 a + 1 ] \frac{5}{2} a^{3} + 3 a^{2} - 6 a + 1\bigr] 2 5 a 3 + 3 a 2 − 6 a + 1 ]
y 2 + ( 1 2 a 3 − 2 a ) x y = x 3 + ( − 1 2 a 3 − 1 2 a 2 + a + 1 ) x 2 + ( − 2 a 3 − a 2 + 6 a − 3 ) x + 5 2 a 3 + 3 a 2 − 6 a + 1 {y}^2+\left(\frac{1}{2}a^{3}-2a\right){x}{y}={x}^{3}+\left(-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}+a+1\right){x}^{2}+\left(-2a^{3}-a^{2}+6a-3\right){x}+\frac{5}{2}a^{3}+3a^{2}-6a+1 y 2 + ( 2 1 a 3 − 2 a ) x y = x 3 + ( − 2 1 a 3 − 2 1 a 2 + a + 1 ) x 2 + ( − 2 a 3 − a 2 + 6 a − 3 ) x + 2 5 a 3 + 3 a 2 − 6 a + 1
16.1-a9
16.1-a
12 12 1 2
24 24 2 4
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
16.1
2 4 2^{4} 2 4
2 8 2^{8} 2 8
5.05491 5.05491 5 . 0 5 4 9 1
( 1 / 2 a 3 − 2 a ) (1/2a^3-2a) ( 1 / 2 a 3 − 2 a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
133.2915240 133.2915240 1 3 3 . 2 9 1 5 2 4 0
0.833072025
20297764880 a 3 − 17740898400 a 2 − 106280476640 a + 92892550000 20297764880 a^{3} - 17740898400 a^{2} - 106280476640 a + 92892550000 2 0 2 9 7 7 6 4 8 8 0 a 3 − 1 7 7 4 0 8 9 8 4 0 0 a 2 − 1 0 6 2 8 0 4 7 6 6 4 0 a + 9 2 8 9 2 5 5 0 0 0 0
[ 1 2 a 3 − 2 a \bigl[\frac{1}{2} a^{3} - 2 a [ 2 1 a 3 − 2 a , a + 1 a + 1 a + 1 , 1 2 a 3 − 2 a \frac{1}{2} a^{3} - 2 a 2 1 a 3 − 2 a , a 3 + 2 a 2 − 2 a − 4 a^{3} + 2 a^{2} - 2 a - 4 a 3 + 2 a 2 − 2 a − 4 , 7 2 a 3 + 7 a 2 − 6 a − 9 ] \frac{7}{2} a^{3} + 7 a^{2} - 6 a - 9\bigr] 2 7 a 3 + 7 a 2 − 6 a − 9 ]
y 2 + ( 1 2 a 3 − 2 a ) x y + ( 1 2 a 3 − 2 a ) y = x 3 + ( a + 1 ) x 2 + ( a 3 + 2 a 2 − 2 a − 4 ) x + 7 2 a 3 + 7 a 2 − 6 a − 9 {y}^2+\left(\frac{1}{2}a^{3}-2a\right){x}{y}+\left(\frac{1}{2}a^{3}-2a\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(a^{3}+2a^{2}-2a-4\right){x}+\frac{7}{2}a^{3}+7a^{2}-6a-9 y 2 + ( 2 1 a 3 − 2 a ) x y + ( 2 1 a 3 − 2 a ) y = x 3 + ( a + 1 ) x 2 + ( a 3 + 2 a 2 − 2 a − 4 ) x + 2 7 a 3 + 7 a 2 − 6 a − 9
16.1-a10
16.1-a
12 12 1 2
24 24 2 4
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
16.1
2 4 2^{4} 2 4
2 8 2^{8} 2 8
5.05491 5.05491 5 . 0 5 4 9 1
( 1 / 2 a 3 − 2 a ) (1/2a^3-2a) ( 1 / 2 a 3 − 2 a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
133.2915240 133.2915240 1 3 3 . 2 9 1 5 2 4 0
0.833072025
− 7753056320 a 3 + 17740898400 a 2 + 5922808160 a − 13552840400 -7753056320 a^{3} + 17740898400 a^{2} + 5922808160 a - 13552840400 − 7 7 5 3 0 5 6 3 2 0 a 3 + 1 7 7 4 0 8 9 8 4 0 0 a 2 + 5 9 2 2 8 0 8 1 6 0 a − 1 3 5 5 2 8 4 0 4 0 0
[ 1 2 a 3 − 2 a \bigl[\frac{1}{2} a^{3} - 2 a [ 2 1 a 3 − 2 a , − 1 2 a 3 + 3 a + 1 -\frac{1}{2} a^{3} + 3 a + 1 − 2 1 a 3 + 3 a + 1 , 1 2 a 3 − 2 a \frac{1}{2} a^{3} - 2 a 2 1 a 3 − 2 a , − 2 a 3 − 2 a 2 + 10 a + 8 -2 a^{3} - 2 a^{2} + 10 a + 8 − 2 a 3 − 2 a 2 + 1 0 a + 8 , − 15 2 a 3 − 7 a 2 + 38 a + 33 ] -\frac{15}{2} a^{3} - 7 a^{2} + 38 a + 33\bigr] − 2 1 5 a 3 − 7 a 2 + 3 8 a + 3 3 ]
y 2 + ( 1 2 a 3 − 2 a ) x y + ( 1 2 a 3 − 2 a ) y = x 3 + ( − 1 2 a 3 + 3 a + 1 ) x 2 + ( − 2 a 3 − 2 a 2 + 10 a + 8 ) x − 15 2 a 3 − 7 a 2 + 38 a + 33 {y}^2+\left(\frac{1}{2}a^{3}-2a\right){x}{y}+\left(\frac{1}{2}a^{3}-2a\right){y}={x}^{3}+\left(-\frac{1}{2}a^{3}+3a+1\right){x}^{2}+\left(-2a^{3}-2a^{2}+10a+8\right){x}-\frac{15}{2}a^{3}-7a^{2}+38a+33 y 2 + ( 2 1 a 3 − 2 a ) x y + ( 2 1 a 3 − 2 a ) y = x 3 + ( − 2 1 a 3 + 3 a + 1 ) x 2 + ( − 2 a 3 − 2 a 2 + 1 0 a + 8 ) x − 2 1 5 a 3 − 7 a 2 + 3 8 a + 3 3
16.1-a11
16.1-a
12 12 1 2
24 24 2 4
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
16.1
2 4 2^{4} 2 4
2 16 2^{16} 2 1 6
5.05491 5.05491 5 . 0 5 4 9 1
( 1 / 2 a 3 − 2 a ) (1/2a^3-2a) ( 1 / 2 a 3 − 2 a )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2Cs , 3B
1 1 1
1 1 1
1 1 1
533.1660961 533.1660961 5 3 3 . 1 6 6 0 9 6 1
0.833072025
30720 a 3 − 245760 a + 204800 30720 a^{3} - 245760 a + 204800 3 0 7 2 0 a 3 − 2 4 5 7 6 0 a + 2 0 4 8 0 0
[ 0 \bigl[0 [ 0 , − a -a − a , 0 0 0 , − a 3 − 3 a 2 − 2 a -a^{3} - 3 a^{2} - 2 a − a 3 − 3 a 2 − 2 a , 4 a 3 + 10 a 2 − 5 ] 4 a^{3} + 10 a^{2} - 5\bigr] 4 a 3 + 1 0 a 2 − 5 ]
y 2 = x 3 − a x 2 + ( − a 3 − 3 a 2 − 2 a ) x + 4 a 3 + 10 a 2 − 5 {y}^2={x}^{3}-a{x}^{2}+\left(-a^{3}-3a^{2}-2a\right){x}+4a^{3}+10a^{2}-5 y 2 = x 3 − a x 2 + ( − a 3 − 3 a 2 − 2 a ) x + 4 a 3 + 1 0 a 2 − 5
16.1-a12
16.1-a
12 12 1 2
24 24 2 4
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
16.1
2 4 2^{4} 2 4
2 16 2^{16} 2 1 6
5.05491 5.05491 5 . 0 5 4 9 1
( 1 / 2 a 3 − 2 a ) (1/2a^3-2a) ( 1 / 2 a 3 − 2 a )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2Cs , 3B
1 1 1
1 1 1
1 1 1
533.1660961 533.1660961 5 3 3 . 1 6 6 0 9 6 1
0.833072025
− 30720 a 3 + 245760 a + 204800 -30720 a^{3} + 245760 a + 204800 − 3 0 7 2 0 a 3 + 2 4 5 7 6 0 a + 2 0 4 8 0 0
[ 0 \bigl[0 [ 0 , − 1 2 a 3 + 3 a -\frac{1}{2} a^{3} + 3 a − 2 1 a 3 + 3 a , 0 0 0 , − 4 a 3 + 3 a 2 + 22 a − 18 -4 a^{3} + 3 a^{2} + 22 a - 18 − 4 a 3 + 3 a 2 + 2 2 a − 1 8 , 12 a 3 − 10 a 2 − 64 a + 55 ] 12 a^{3} - 10 a^{2} - 64 a + 55\bigr] 1 2 a 3 − 1 0 a 2 − 6 4 a + 5 5 ]
y 2 = x 3 + ( − 1 2 a 3 + 3 a ) x 2 + ( − 4 a 3 + 3 a 2 + 22 a − 18 ) x + 12 a 3 − 10 a 2 − 64 a + 55 {y}^2={x}^{3}+\left(-\frac{1}{2}a^{3}+3a\right){x}^{2}+\left(-4a^{3}+3a^{2}+22a-18\right){x}+12a^{3}-10a^{2}-64a+55 y 2 = x 3 + ( − 2 1 a 3 + 3 a ) x 2 + ( − 4 a 3 + 3 a 2 + 2 2 a − 1 8 ) x + 1 2 a 3 − 1 0 a 2 − 6 4 a + 5 5
31.1-a1
31.1-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.1
31 31 3 1
− 3 1 4 - 31^{4} − 3 1 4
5.49059 5.49059 5 . 4 9 0 5 9
( 1 / 2 a 3 + 1 / 2 a 2 − 3 a ) (1/2a^3+1/2a^2-3a) ( 1 / 2 a 3 + 1 / 2 a 2 − 3 a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
4 4 4
2 2 2
1 1 1
21.32891754 21.32891754 2 1 . 3 2 8 9 1 7 5 4
1.066445877
− 505219547793146787969 1847042 a 3 + 1156066776906178179193 1847042 a 2 + 192976118760042249464 923521 a − 441577709639777226006 923521 -\frac{505219547793146787969}{1847042} a^{3} + \frac{1156066776906178179193}{1847042} a^{2} + \frac{192976118760042249464}{923521} a - \frac{441577709639777226006}{923521} − 1 8 4 7 0 4 2 5 0 5 2 1 9 5 4 7 7 9 3 1 4 6 7 8 7 9 6 9 a 3 + 1 8 4 7 0 4 2 1 1 5 6 0 6 6 7 7 6 9 0 6 1 7 8 1 7 9 1 9 3 a 2 + 9 2 3 5 2 1 1 9 2 9 7 6 1 1 8 7 6 0 0 4 2 2 4 9 4 6 4 a − 9 2 3 5 2 1 4 4 1 5 7 7 7 0 9 6 3 9 7 7 7 2 2 6 0 0 6
[ 1 2 a 3 + 1 2 a 2 − 2 a − 1 \bigl[\frac{1}{2} a^{3} + \frac{1}{2} a^{2} - 2 a - 1 [ 2 1 a 3 + 2 1 a 2 − 2 a − 1 , − 1 2 a 3 − 1 2 a 2 + 3 a + 2 -\frac{1}{2} a^{3} - \frac{1}{2} a^{2} + 3 a + 2 − 2 1 a 3 − 2 1 a 2 + 3 a + 2 , 1 2 a 3 − a \frac{1}{2} a^{3} - a 2 1 a 3 − a , 43 a 3 + 93 2 a 2 − 208 a − 211 43 a^{3} + \frac{93}{2} a^{2} - 208 a - 211 4 3 a 3 + 2 9 3 a 2 − 2 0 8 a − 2 1 1 , − 226 a 3 − 349 2 a 2 + 1236 a + 1026 ] -226 a^{3} - \frac{349}{2} a^{2} + 1236 a + 1026\bigr] − 2 2 6 a 3 − 2 3 4 9 a 2 + 1 2 3 6 a + 1 0 2 6 ]
y 2 + ( 1 2 a 3 + 1 2 a 2 − 2 a − 1 ) x y + ( 1 2 a 3 − a ) y = x 3 + ( − 1 2 a 3 − 1 2 a 2 + 3 a + 2 ) x 2 + ( 43 a 3 + 93 2 a 2 − 208 a − 211 ) x − 226 a 3 − 349 2 a 2 + 1236 a + 1026 {y}^2+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-2a-1\right){x}{y}+\left(\frac{1}{2}a^{3}-a\right){y}={x}^{3}+\left(-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}+3a+2\right){x}^{2}+\left(43a^{3}+\frac{93}{2}a^{2}-208a-211\right){x}-226a^{3}-\frac{349}{2}a^{2}+1236a+1026 y 2 + ( 2 1 a 3 + 2 1 a 2 − 2 a − 1 ) x y + ( 2 1 a 3 − a ) y = x 3 + ( − 2 1 a 3 − 2 1 a 2 + 3 a + 2 ) x 2 + ( 4 3 a 3 + 2 9 3 a 2 − 2 0 8 a − 2 1 1 ) x − 2 2 6 a 3 − 2 3 4 9 a 2 + 1 2 3 6 a + 1 0 2 6
31.1-a2
31.1-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.1
31 31 3 1
3 1 3 31^{3} 3 1 3
5.49059 5.49059 5 . 4 9 0 5 9
( 1 / 2 a 3 + 1 / 2 a 2 − 3 a ) (1/2a^3+1/2a^2-3a) ( 1 / 2 a 3 + 1 / 2 a 2 − 3 a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
170.6313403 170.6313403 1 7 0 . 6 3 1 3 4 0 3
1.066445877
248777767711978335 59582 a 3 + 569082138084219041 59582 a 2 − 95151399194580063 29791 a − 217251974013061967 29791 \frac{248777767711978335}{59582} a^{3} + \frac{569082138084219041}{59582} a^{2} - \frac{95151399194580063}{29791} a - \frac{217251974013061967}{29791} 5 9 5 8 2 2 4 8 7 7 7 7 6 7 7 1 1 9 7 8 3 3 5 a 3 + 5 9 5 8 2 5 6 9 0 8 2 1 3 8 0 8 4 2 1 9 0 4 1 a 2 − 2 9 7 9 1 9 5 1 5 1 3 9 9 1 9 4 5 8 0 0 6 3 a − 2 9 7 9 1 2 1 7 2 5 1 9 7 4 0 1 3 0 6 1 9 6 7
[ 1 2 a 3 + 1 2 a 2 − 2 a \bigl[\frac{1}{2} a^{3} + \frac{1}{2} a^{2} - 2 a [ 2 1 a 3 + 2 1 a 2 − 2 a , − 1 2 a 2 + 2 -\frac{1}{2} a^{2} + 2 − 2 1 a 2 + 2 , 1 2 a 3 + 1 2 a 2 − 2 a \frac{1}{2} a^{3} + \frac{1}{2} a^{2} - 2 a 2 1 a 3 + 2 1 a 2 − 2 a , 1709 2 a 3 − 3885 2 a 2 − 671 a + 1460 \frac{1709}{2} a^{3} - \frac{3885}{2} a^{2} - 671 a + 1460 2 1 7 0 9 a 3 − 2 3 8 8 5 a 2 − 6 7 1 a + 1 4 6 0 , − 43216 a 3 + 98857 a 2 + 33055 a − 75482 ] -43216 a^{3} + 98857 a^{2} + 33055 a - 75482\bigr] − 4 3 2 1 6 a 3 + 9 8 8 5 7 a 2 + 3 3 0 5 5 a − 7 5 4 8 2 ]
y 2 + ( 1 2 a 3 + 1 2 a 2 − 2 a ) x y + ( 1 2 a 3 + 1 2 a 2 − 2 a ) y = x 3 + ( − 1 2 a 2 + 2 ) x 2 + ( 1709 2 a 3 − 3885 2 a 2 − 671 a + 1460 ) x − 43216 a 3 + 98857 a 2 + 33055 a − 75482 {y}^2+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-2a\right){x}{y}+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-2a\right){y}={x}^{3}+\left(-\frac{1}{2}a^{2}+2\right){x}^{2}+\left(\frac{1709}{2}a^{3}-\frac{3885}{2}a^{2}-671a+1460\right){x}-43216a^{3}+98857a^{2}+33055a-75482 y 2 + ( 2 1 a 3 + 2 1 a 2 − 2 a ) x y + ( 2 1 a 3 + 2 1 a 2 − 2 a ) y = x 3 + ( − 2 1 a 2 + 2 ) x 2 + ( 2 1 7 0 9 a 3 − 2 3 8 8 5 a 2 − 6 7 1 a + 1 4 6 0 ) x − 4 3 2 1 6 a 3 + 9 8 8 5 7 a 2 + 3 3 0 5 5 a − 7 5 4 8 2
31.1-a3
31.1-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.1
31 31 3 1
− 31 -31 − 3 1
5.49059 5.49059 5 . 4 9 0 5 9
( 1 / 2 a 3 + 1 / 2 a 2 − 3 a ) (1/2a^3+1/2a^2-3a) ( 1 / 2 a 3 + 1 / 2 a 2 − 3 a )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
682.5253613 682.5253613 6 8 2 . 5 2 5 3 6 1 3
1.066445877
11686086 31 a 3 + 31460719 62 a 2 − 43571072 31 a − 42296544 31 \frac{11686086}{31} a^{3} + \frac{31460719}{62} a^{2} - \frac{43571072}{31} a - \frac{42296544}{31} 3 1 1 1 6 8 6 0 8 6 a 3 + 6 2 3 1 4 6 0 7 1 9 a 2 − 3 1 4 3 5 7 1 0 7 2 a − 3 1 4 2 2 9 6 5 4 4
[ 1 \bigl[1 [ 1 , 1 2 a 2 \frac{1}{2} a^{2} 2 1 a 2 , 1 2 a 2 + a − 1 \frac{1}{2} a^{2} + a - 1 2 1 a 2 + a − 1 , a 3 − 3 2 a 2 − 2 a + 1 a^{3} - \frac{3}{2} a^{2} - 2 a + 1 a 3 − 2 3 a 2 − 2 a + 1 , 2 a 3 − 11 2 a 2 − a + 4 ] 2 a^{3} - \frac{11}{2} a^{2} - a + 4\bigr] 2 a 3 − 2 1 1 a 2 − a + 4 ]
y 2 + x y + ( 1 2 a 2 + a − 1 ) y = x 3 + 1 2 a 2 x 2 + ( a 3 − 3 2 a 2 − 2 a + 1 ) x + 2 a 3 − 11 2 a 2 − a + 4 {y}^2+{x}{y}+\left(\frac{1}{2}a^{2}+a-1\right){y}={x}^{3}+\frac{1}{2}a^{2}{x}^{2}+\left(a^{3}-\frac{3}{2}a^{2}-2a+1\right){x}+2a^{3}-\frac{11}{2}a^{2}-a+4 y 2 + x y + ( 2 1 a 2 + a − 1 ) y = x 3 + 2 1 a 2 x 2 + ( a 3 − 2 3 a 2 − 2 a + 1 ) x + 2 a 3 − 2 1 1 a 2 − a + 4
31.1-a4
31.1-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.1
31 31 3 1
3 1 6 31^{6} 3 1 6
5.49059 5.49059 5 . 4 9 0 5 9
( 1 / 2 a 3 + 1 / 2 a 2 − 3 a ) (1/2a^3+1/2a^2-3a) ( 1 / 2 a 3 + 1 / 2 a 2 − 3 a )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2Cs , 3B
1 1 1
2 2 2
1 1 1
341.2626806 341.2626806 3 4 1 . 2 6 2 6 8 0 6
1.066445877
408946009712709 887503681 a 3 + 1814035747952571 1775007362 a 2 − 348963373631244 887503681 a − 646404289554322 887503681 \frac{408946009712709}{887503681} a^{3} + \frac{1814035747952571}{1775007362} a^{2} - \frac{348963373631244}{887503681} a - \frac{646404289554322}{887503681} 8 8 7 5 0 3 6 8 1 4 0 8 9 4 6 0 0 9 7 1 2 7 0 9 a 3 + 1 7 7 5 0 0 7 3 6 2 1 8 1 4 0 3 5 7 4 7 9 5 2 5 7 1 a 2 − 8 8 7 5 0 3 6 8 1 3 4 8 9 6 3 3 7 3 6 3 1 2 4 4 a − 8 8 7 5 0 3 6 8 1 6 4 6 4 0 4 2 8 9 5 5 4 3 2 2
[ 1 2 a 3 + 1 2 a 2 − 2 a \bigl[\frac{1}{2} a^{3} + \frac{1}{2} a^{2} - 2 a [ 2 1 a 3 + 2 1 a 2 − 2 a , − 1 2 a 2 + 2 -\frac{1}{2} a^{2} + 2 − 2 1 a 2 + 2 , 1 2 a 3 + 1 2 a 2 − 2 a \frac{1}{2} a^{3} + \frac{1}{2} a^{2} - 2 a 2 1 a 3 + 2 1 a 2 − 2 a , 72 a 3 − 165 a 2 − 56 a + 125 72 a^{3} - 165 a^{2} - 56 a + 125 7 2 a 3 − 1 6 5 a 2 − 5 6 a + 1 2 5 , − 162 a 3 + 370 a 2 + 124 a − 283 ] -162 a^{3} + 370 a^{2} + 124 a - 283\bigr] − 1 6 2 a 3 + 3 7 0 a 2 + 1 2 4 a − 2 8 3 ]
y 2 + ( 1 2 a 3 + 1 2 a 2 − 2 a ) x y + ( 1 2 a 3 + 1 2 a 2 − 2 a ) y = x 3 + ( − 1 2 a 2 + 2 ) x 2 + ( 72 a 3 − 165 a 2 − 56 a + 125 ) x − 162 a 3 + 370 a 2 + 124 a − 283 {y}^2+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-2a\right){x}{y}+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-2a\right){y}={x}^{3}+\left(-\frac{1}{2}a^{2}+2\right){x}^{2}+\left(72a^{3}-165a^{2}-56a+125\right){x}-162a^{3}+370a^{2}+124a-283 y 2 + ( 2 1 a 3 + 2 1 a 2 − 2 a ) x y + ( 2 1 a 3 + 2 1 a 2 − 2 a ) y = x 3 + ( − 2 1 a 2 + 2 ) x 2 + ( 7 2 a 3 − 1 6 5 a 2 − 5 6 a + 1 2 5 ) x − 1 6 2 a 3 + 3 7 0 a 2 + 1 2 4 a − 2 8 3
31.1-a5
31.1-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.1
31 31 3 1
− 3 1 12 - 31^{12} − 3 1 1 2
5.49059 5.49059 5 . 4 9 0 5 9
( 1 / 2 a 3 + 1 / 2 a 2 − 3 a ) (1/2a^3+1/2a^2-3a) ( 1 / 2 a 3 + 1 / 2 a 2 − 3 a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
4 4 4
2 2 2
1 1 1
21.32891754 21.32891754 2 1 . 3 2 8 9 1 7 5 4
1.066445877
− 14383414343925670643585 1575325567577099522 a 3 + 29872156558690483602305 1575325567577099522 a 2 + 6561729841950628185729 787662783788549761 a − 8912263801297866015903 787662783788549761 -\frac{14383414343925670643585}{1575325567577099522} a^{3} + \frac{29872156558690483602305}{1575325567577099522} a^{2} + \frac{6561729841950628185729}{787662783788549761} a - \frac{8912263801297866015903}{787662783788549761} − 1 5 7 5 3 2 5 5 6 7 5 7 7 0 9 9 5 2 2 1 4 3 8 3 4 1 4 3 4 3 9 2 5 6 7 0 6 4 3 5 8 5 a 3 + 1 5 7 5 3 2 5 5 6 7 5 7 7 0 9 9 5 2 2 2 9 8 7 2 1 5 6 5 5 8 6 9 0 4 8 3 6 0 2 3 0 5 a 2 + 7 8 7 6 6 2 7 8 3 7 8 8 5 4 9 7 6 1 6 5 6 1 7 2 9 8 4 1 9 5 0 6 2 8 1 8 5 7 2 9 a − 7 8 7 6 6 2 7 8 3 7 8 8 5 4 9 7 6 1 8 9 1 2 2 6 3 8 0 1 2 9 7 8 6 6 0 1 5 9 0 3
[ 1 2 a 2 \bigl[\frac{1}{2} a^{2} [ 2 1 a 2 , − a + 1 -a + 1 − a + 1 , 1 2 a 3 + 1 2 a 2 − 2 a − 1 \frac{1}{2} a^{3} + \frac{1}{2} a^{2} - 2 a - 1 2 1 a 3 + 2 1 a 2 − 2 a − 1 , − 27 2 a 3 + 2 a 2 + 46 a − 59 -\frac{27}{2} a^{3} + 2 a^{2} + 46 a - 59 − 2 2 7 a 3 + 2 a 2 + 4 6 a − 5 9 , − 43 a 3 − 69 2 a 2 + 108 a − 83 ] -43 a^{3} - \frac{69}{2} a^{2} + 108 a - 83\bigr] − 4 3 a 3 − 2 6 9 a 2 + 1 0 8 a − 8 3 ]
y 2 + 1 2 a 2 x y + ( 1 2 a 3 + 1 2 a 2 − 2 a − 1 ) y = x 3 + ( − a + 1 ) x 2 + ( − 27 2 a 3 + 2 a 2 + 46 a − 59 ) x − 43 a 3 − 69 2 a 2 + 108 a − 83 {y}^2+\frac{1}{2}a^{2}{x}{y}+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-2a-1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-\frac{27}{2}a^{3}+2a^{2}+46a-59\right){x}-43a^{3}-\frac{69}{2}a^{2}+108a-83 y 2 + 2 1 a 2 x y + ( 2 1 a 3 + 2 1 a 2 − 2 a − 1 ) y = x 3 + ( − a + 1 ) x 2 + ( − 2 2 7 a 3 + 2 a 2 + 4 6 a − 5 9 ) x − 4 3 a 3 − 2 6 9 a 2 + 1 0 8 a − 8 3
31.1-a6
31.1-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.1
31 31 3 1
− 3 1 3 - 31^{3} − 3 1 3
5.49059 5.49059 5 . 4 9 0 5 9
( 1 / 2 a 3 + 1 / 2 a 2 − 3 a ) (1/2a^3+1/2a^2-3a) ( 1 / 2 a 3 + 1 / 2 a 2 − 3 a )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
682.5253613 682.5253613 6 8 2 . 5 2 5 3 6 1 3
1.066445877
2944222 29791 a 3 + 36603857 59582 a 2 − 1351764 29791 a − 13276467 29791 \frac{2944222}{29791} a^{3} + \frac{36603857}{59582} a^{2} - \frac{1351764}{29791} a - \frac{13276467}{29791} 2 9 7 9 1 2 9 4 4 2 2 2 a 3 + 5 9 5 8 2 3 6 6 0 3 8 5 7 a 2 − 2 9 7 9 1 1 3 5 1 7 6 4 a − 2 9 7 9 1 1 3 2 7 6 4 6 7
[ 1 2 a 3 + 1 2 a 2 − 2 a − 1 \bigl[\frac{1}{2} a^{3} + \frac{1}{2} a^{2} - 2 a - 1 [ 2 1 a 3 + 2 1 a 2 − 2 a − 1 , 1 2 a 3 − 1 2 a 2 − a \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - a 2 1 a 3 − 2 1 a 2 − a , 1 2 a 3 − 2 a + 1 \frac{1}{2} a^{3} - 2 a + 1 2 1 a 3 − 2 a + 1 , − a 3 + 2 a 2 + 2 a − 3 -a^{3} + 2 a^{2} + 2 a - 3 − a 3 + 2 a 2 + 2 a − 3 , 3 a 3 − 7 2 a 2 − 13 a + 12 ] 3 a^{3} - \frac{7}{2} a^{2} - 13 a + 12\bigr] 3 a 3 − 2 7 a 2 − 1 3 a + 1 2 ]
y 2 + ( 1 2 a 3 + 1 2 a 2 − 2 a − 1 ) x y + ( 1 2 a 3 − 2 a + 1 ) y = x 3 + ( 1 2 a 3 − 1 2 a 2 − a ) x 2 + ( − a 3 + 2 a 2 + 2 a − 3 ) x + 3 a 3 − 7 2 a 2 − 13 a + 12 {y}^2+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-2a-1\right){x}{y}+\left(\frac{1}{2}a^{3}-2a+1\right){y}={x}^{3}+\left(\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-a\right){x}^{2}+\left(-a^{3}+2a^{2}+2a-3\right){x}+3a^{3}-\frac{7}{2}a^{2}-13a+12 y 2 + ( 2 1 a 3 + 2 1 a 2 − 2 a − 1 ) x y + ( 2 1 a 3 − 2 a + 1 ) y = x 3 + ( 2 1 a 3 − 2 1 a 2 − a ) x 2 + ( − a 3 + 2 a 2 + 2 a − 3 ) x + 3 a 3 − 2 7 a 2 − 1 3 a + 1 2
31.1-a7
31.1-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.1
31 31 3 1
3 1 2 31^{2} 3 1 2
5.49059 5.49059 5 . 4 9 0 5 9
( 1 / 2 a 3 + 1 / 2 a 2 − 3 a ) (1/2a^3+1/2a^2-3a) ( 1 / 2 a 3 + 1 / 2 a 2 − 3 a )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2Cs , 3B
1 1 1
2 2 2
1 1 1
341.2626806 341.2626806 3 4 1 . 2 6 2 6 8 0 6
1.066445877
− 469486995236469 961 a 3 − 820671155387481 1922 a 2 + 2458250110522194 961 a + 2148580931607341 961 -\frac{469486995236469}{961} a^{3} - \frac{820671155387481}{1922} a^{2} + \frac{2458250110522194}{961} a + \frac{2148580931607341}{961} − 9 6 1 4 6 9 4 8 6 9 9 5 2 3 6 4 6 9 a 3 − 1 9 2 2 8 2 0 6 7 1 1 5 5 3 8 7 4 8 1 a 2 + 9 6 1 2 4 5 8 2 5 0 1 1 0 5 2 2 1 9 4 a + 9 6 1 2 1 4 8 5 8 0 9 3 1 6 0 7 3 4 1
[ 1 \bigl[1 [ 1 , 1 2 a 2 \frac{1}{2} a^{2} 2 1 a 2 , 1 2 a 2 + a − 1 \frac{1}{2} a^{2} + a - 1 2 1 a 2 + a − 1 , 16 a 3 − 29 a 2 − 22 a + 11 16 a^{3} - 29 a^{2} - 22 a + 11 1 6 a 3 − 2 9 a 2 − 2 2 a + 1 1 , 199 2 a 3 − 241 a 2 − 57 a + 197 ] \frac{199}{2} a^{3} - 241 a^{2} - 57 a + 197\bigr] 2 1 9 9 a 3 − 2 4 1 a 2 − 5 7 a + 1 9 7 ]
y 2 + x y + ( 1 2 a 2 + a − 1 ) y = x 3 + 1 2 a 2 x 2 + ( 16 a 3 − 29 a 2 − 22 a + 11 ) x + 199 2 a 3 − 241 a 2 − 57 a + 197 {y}^2+{x}{y}+\left(\frac{1}{2}a^{2}+a-1\right){y}={x}^{3}+\frac{1}{2}a^{2}{x}^{2}+\left(16a^{3}-29a^{2}-22a+11\right){x}+\frac{199}{2}a^{3}-241a^{2}-57a+197 y 2 + x y + ( 2 1 a 2 + a − 1 ) y = x 3 + 2 1 a 2 x 2 + ( 1 6 a 3 − 2 9 a 2 − 2 2 a + 1 1 ) x + 2 1 9 9 a 3 − 2 4 1 a 2 − 5 7 a + 1 9 7
31.1-a8
31.1-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.1
31 31 3 1
31 31 3 1
5.49059 5.49059 5 . 4 9 0 5 9
( 1 / 2 a 3 + 1 / 2 a 2 − 3 a ) (1/2a^3+1/2a^2-3a) ( 1 / 2 a 3 + 1 / 2 a 2 − 3 a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
170.6313403 170.6313403 1 7 0 . 6 3 1 3 4 0 3
1.066445877
− 115679900627333053956710625 62 a 3 − 101107940561583547666668071 62 a 2 + 302853911657568218576001528 31 a + 264704024922729858633502426 31 -\frac{115679900627333053956710625}{62} a^{3} - \frac{101107940561583547666668071}{62} a^{2} + \frac{302853911657568218576001528}{31} a + \frac{264704024922729858633502426}{31} − 6 2 1 1 5 6 7 9 9 0 0 6 2 7 3 3 3 0 5 3 9 5 6 7 1 0 6 2 5 a 3 − 6 2 1 0 1 1 0 7 9 4 0 5 6 1 5 8 3 5 4 7 6 6 6 6 6 8 0 7 1 a 2 + 3 1 3 0 2 8 5 3 9 1 1 6 5 7 5 6 8 2 1 8 5 7 6 0 0 1 5 2 8 a + 3 1 2 6 4 7 0 4 0 2 4 9 2 2 7 2 9 8 5 8 6 3 3 5 0 2 4 2 6
[ 1 2 a 3 − 2 a + 1 \bigl[\frac{1}{2} a^{3} - 2 a + 1 [ 2 1 a 3 − 2 a + 1 , − 1 2 a 3 + a -\frac{1}{2} a^{3} + a − 2 1 a 3 + a , 1 1 1 , − 38 a 3 + 49 2 a 2 + 185 a − 164 -38 a^{3} + \frac{49}{2} a^{2} + 185 a - 164 − 3 8 a 3 + 2 4 9 a 2 + 1 8 5 a − 1 6 4 , 125 a 3 − 275 2 a 2 − 686 a + 630 ] 125 a^{3} - \frac{275}{2} a^{2} - 686 a + 630\bigr] 1 2 5 a 3 − 2 2 7 5 a 2 − 6 8 6 a + 6 3 0 ]
y 2 + ( 1 2 a 3 − 2 a + 1 ) x y + y = x 3 + ( − 1 2 a 3 + a ) x 2 + ( − 38 a 3 + 49 2 a 2 + 185 a − 164 ) x + 125 a 3 − 275 2 a 2 − 686 a + 630 {y}^2+\left(\frac{1}{2}a^{3}-2a+1\right){x}{y}+{y}={x}^{3}+\left(-\frac{1}{2}a^{3}+a\right){x}^{2}+\left(-38a^{3}+\frac{49}{2}a^{2}+185a-164\right){x}+125a^{3}-\frac{275}{2}a^{2}-686a+630 y 2 + ( 2 1 a 3 − 2 a + 1 ) x y + y = x 3 + ( − 2 1 a 3 + a ) x 2 + ( − 3 8 a 3 + 2 4 9 a 2 + 1 8 5 a − 1 6 4 ) x + 1 2 5 a 3 − 2 2 7 5 a 2 − 6 8 6 a + 6 3 0
31.2-a1
31.2-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.2
31 31 3 1
31 31 3 1
5.49059 5.49059 5 . 4 9 0 5 9
( 1 / 2 a 2 + a − 3 ) (1/2a^2+a-3) ( 1 / 2 a 2 + a − 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
170.6313403 170.6313403 1 7 0 . 6 3 1 3 4 0 3
1.066445877
44185790224430943294130347 62 a 3 + 101107940561583547666668071 62 a 2 − 16877470045959775925680416 31 a − 38619796762020784366501787 31 \frac{44185790224430943294130347}{62} a^{3} + \frac{101107940561583547666668071}{62} a^{2} - \frac{16877470045959775925680416}{31} a - \frac{38619796762020784366501787}{31} 6 2 4 4 1 8 5 7 9 0 2 2 4 4 3 0 9 4 3 2 9 4 1 3 0 3 4 7 a 3 + 6 2 1 0 1 1 0 7 9 4 0 5 6 1 5 8 3 5 4 7 6 6 6 6 6 8 0 7 1 a 2 − 3 1 1 6 8 7 7 4 7 0 0 4 5 9 5 9 7 7 5 9 2 5 6 8 0 4 1 6 a − 3 1 3 8 6 1 9 7 9 6 7 6 2 0 2 0 7 8 4 3 6 6 5 0 1 7 8 7
[ 1 2 a 3 − 2 a + 1 \bigl[\frac{1}{2} a^{3} - 2 a + 1 [ 2 1 a 3 − 2 a + 1 , 1 2 a 3 − 3 a \frac{1}{2} a^{3} - 3 a 2 1 a 3 − 3 a , 1 1 1 , 21 a 3 − 49 2 a 2 − 51 a − 17 21 a^{3} - \frac{49}{2} a^{2} - 51 a - 17 2 1 a 3 − 2 4 9 a 2 − 5 1 a − 1 7 , − 32 a 3 + 275 2 a 2 − 58 a − 195 ] -32 a^{3} + \frac{275}{2} a^{2} - 58 a - 195\bigr] − 3 2 a 3 + 2 2 7 5 a 2 − 5 8 a − 1 9 5 ]
y 2 + ( 1 2 a 3 − 2 a + 1 ) x y + y = x 3 + ( 1 2 a 3 − 3 a ) x 2 + ( 21 a 3 − 49 2 a 2 − 51 a − 17 ) x − 32 a 3 + 275 2 a 2 − 58 a − 195 {y}^2+\left(\frac{1}{2}a^{3}-2a+1\right){x}{y}+{y}={x}^{3}+\left(\frac{1}{2}a^{3}-3a\right){x}^{2}+\left(21a^{3}-\frac{49}{2}a^{2}-51a-17\right){x}-32a^{3}+\frac{275}{2}a^{2}-58a-195 y 2 + ( 2 1 a 3 − 2 a + 1 ) x y + y = x 3 + ( 2 1 a 3 − 3 a ) x 2 + ( 2 1 a 3 − 2 4 9 a 2 − 5 1 a − 1 7 ) x − 3 2 a 3 + 2 2 7 5 a 2 − 5 8 a − 1 9 5
31.2-a2
31.2-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.2
31 31 3 1
3 1 2 31^{2} 3 1 2
5.49059 5.49059 5 . 4 9 0 5 9
( 1 / 2 a 2 + a − 3 ) (1/2a^2+a-3) ( 1 / 2 a 2 + a − 3 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2Cs , 3B
1 1 1
2 2 2
1 1 1
341.2626806 341.2626806 3 4 1 . 2 6 2 6 8 0 6
1.066445877
179335930448310 961 a 3 + 820671155387481 1922 a 2 − 137041592216922 961 a − 313432534555102 961 \frac{179335930448310}{961} a^{3} + \frac{820671155387481}{1922} a^{2} - \frac{137041592216922}{961} a - \frac{313432534555102}{961} 9 6 1 1 7 9 3 3 5 9 3 0 4 4 8 3 1 0 a 3 + 1 9 2 2 8 2 0 6 7 1 1 5 5 3 8 7 4 8 1 a 2 − 9 6 1 1 3 7 0 4 1 5 9 2 2 1 6 9 2 2 a − 9 6 1 3 1 3 4 3 2 5 3 4 5 5 5 1 0 2
[ 1 2 a 3 − 2 a + 1 \bigl[\frac{1}{2} a^{3} - 2 a + 1 [ 2 1 a 3 − 2 a + 1 , 1 2 a 3 − 3 a \frac{1}{2} a^{3} - 3 a 2 1 a 3 − 3 a , 1 1 1 , 6 a 3 − 12 a 2 − 6 a + 3 6 a^{3} - 12 a^{2} - 6 a + 3 6 a 3 − 1 2 a 2 − 6 a + 3 , 43 2 a 3 − 115 2 a 2 + a + 41 ] \frac{43}{2} a^{3} - \frac{115}{2} a^{2} + a + 41\bigr] 2 4 3 a 3 − 2 1 1 5 a 2 + a + 4 1 ]
y 2 + ( 1 2 a 3 − 2 a + 1 ) x y + y = x 3 + ( 1 2 a 3 − 3 a ) x 2 + ( 6 a 3 − 12 a 2 − 6 a + 3 ) x + 43 2 a 3 − 115 2 a 2 + a + 41 {y}^2+\left(\frac{1}{2}a^{3}-2a+1\right){x}{y}+{y}={x}^{3}+\left(\frac{1}{2}a^{3}-3a\right){x}^{2}+\left(6a^{3}-12a^{2}-6a+3\right){x}+\frac{43}{2}a^{3}-\frac{115}{2}a^{2}+a+41 y 2 + ( 2 1 a 3 − 2 a + 1 ) x y + y = x 3 + ( 2 1 a 3 − 3 a ) x 2 + ( 6 a 3 − 1 2 a 2 − 6 a + 3 ) x + 2 4 3 a 3 − 2 1 1 5 a 2 + a + 4 1
31.2-a3
31.2-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.2
31 31 3 1
− 3 1 3 - 31^{3} − 3 1 3
5.49059 5.49059 5 . 4 9 0 5 9
( 1 / 2 a 2 + a − 3 ) (1/2a^2+a-3) ( 1 / 2 a 2 + a − 3 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
682.5253613 682.5253613 6 8 2 . 5 2 5 3 6 1 3
1.066445877
− 8156784 29791 a 3 − 36603857 59582 a 2 + 43052260 29791 a + 96535104 29791 -\frac{8156784}{29791} a^{3} - \frac{36603857}{59582} a^{2} + \frac{43052260}{29791} a + \frac{96535104}{29791} − 2 9 7 9 1 8 1 5 6 7 8 4 a 3 − 5 9 5 8 2 3 6 6 0 3 8 5 7 a 2 + 2 9 7 9 1 4 3 0 5 2 2 6 0 a + 2 9 7 9 1 9 6 5 3 5 1 0 4
[ 1 2 a 3 + 1 2 a 2 − 2 a \bigl[\frac{1}{2} a^{3} + \frac{1}{2} a^{2} - 2 a [ 2 1 a 3 + 2 1 a 2 − 2 a , a + 1 a + 1 a + 1 , 1 2 a 3 + 1 2 a 2 − a − 1 \frac{1}{2} a^{3} + \frac{1}{2} a^{2} - a - 1 2 1 a 3 + 2 1 a 2 − a − 1 , 1 2 a 3 + 1 2 a 2 − a + 1 \frac{1}{2} a^{3} + \frac{1}{2} a^{2} - a + 1 2 1 a 3 + 2 1 a 2 − a + 1 , − 1 2 a 3 + 3 a 2 − 2 ] -\frac{1}{2} a^{3} + 3 a^{2} - 2\bigr] − 2 1 a 3 + 3 a 2 − 2 ]
y 2 + ( 1 2 a 3 + 1 2 a 2 − 2 a ) x y + ( 1 2 a 3 + 1 2 a 2 − a − 1 ) y = x 3 + ( a + 1 ) x 2 + ( 1 2 a 3 + 1 2 a 2 − a + 1 ) x − 1 2 a 3 + 3 a 2 − 2 {y}^2+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-2a\right){x}{y}+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-a-1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-a+1\right){x}-\frac{1}{2}a^{3}+3a^{2}-2 y 2 + ( 2 1 a 3 + 2 1 a 2 − 2 a ) x y + ( 2 1 a 3 + 2 1 a 2 − a − 1 ) y = x 3 + ( a + 1 ) x 2 + ( 2 1 a 3 + 2 1 a 2 − a + 1 ) x − 2 1 a 3 + 3 a 2 − 2
31.2-a4
31.2-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.2
31 31 3 1
− 3 1 12 - 31^{12} − 3 1 1 2
5.49059 5.49059 5 . 4 9 0 5 9
( 1 / 2 a 2 + a − 3 ) (1/2a^2+a-3) ( 1 / 2 a 2 + a − 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
4 4 4
2 2 2
1 1 1
21.32891754 21.32891754 2 1 . 3 2 8 9 1 7 5 4
1.066445877
18294256594913191872513 787662783788549761 a 3 − 29872156558690483602305 1575325567577099522 a 2 − 95382125225553480591493 787662783788549761 a + 80704205874773584791012 787662783788549761 \frac{18294256594913191872513}{787662783788549761} a^{3} - \frac{29872156558690483602305}{1575325567577099522} a^{2} - \frac{95382125225553480591493}{787662783788549761} a + \frac{80704205874773584791012}{787662783788549761} 7 8 7 6 6 2 7 8 3 7 8 8 5 4 9 7 6 1 1 8 2 9 4 2 5 6 5 9 4 9 1 3 1 9 1 8 7 2 5 1 3 a 3 − 1 5 7 5 3 2 5 5 6 7 5 7 7 0 9 9 5 2 2 2 9 8 7 2 1 5 6 5 5 8 6 9 0 4 8 3 6 0 2 3 0 5 a 2 − 7 8 7 6 6 2 7 8 3 7 8 8 5 4 9 7 6 1 9 5 3 8 2 1 2 5 2 2 5 5 5 3 4 8 0 5 9 1 4 9 3 a + 7 8 7 6 6 2 7 8 3 7 8 8 5 4 9 7 6 1 8 0 7 0 4 2 0 5 8 7 4 7 7 3 5 8 4 7 9 1 0 1 2
[ 1 2 a 3 − 2 a + 1 \bigl[\frac{1}{2} a^{3} - 2 a + 1 [ 2 1 a 3 − 2 a + 1 , 1 2 a 3 + 1 2 a 2 − 2 a − 1 \frac{1}{2} a^{3} + \frac{1}{2} a^{2} - 2 a - 1 2 1 a 3 + 2 1 a 2 − 2 a − 1 , 1 2 a 3 + 1 2 a 2 − a − 1 \frac{1}{2} a^{3} + \frac{1}{2} a^{2} - a - 1 2 1 a 3 + 2 1 a 2 − a − 1 , − 7 a 3 − 10 a 2 + 8 a − 14 -7 a^{3} - 10 a^{2} + 8 a - 14 − 7 a 3 − 1 0 a 2 + 8 a − 1 4 , − 73 2 a 3 − 62 a 2 + 48 a − 4 ] -\frac{73}{2} a^{3} - 62 a^{2} + 48 a - 4\bigr] − 2 7 3 a 3 − 6 2 a 2 + 4 8 a − 4 ]
y 2 + ( 1 2 a 3 − 2 a + 1 ) x y + ( 1 2 a 3 + 1 2 a 2 − a − 1 ) y = x 3 + ( 1 2 a 3 + 1 2 a 2 − 2 a − 1 ) x 2 + ( − 7 a 3 − 10 a 2 + 8 a − 14 ) x − 73 2 a 3 − 62 a 2 + 48 a − 4 {y}^2+\left(\frac{1}{2}a^{3}-2a+1\right){x}{y}+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-a-1\right){y}={x}^{3}+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-2a-1\right){x}^{2}+\left(-7a^{3}-10a^{2}+8a-14\right){x}-\frac{73}{2}a^{3}-62a^{2}+48a-4 y 2 + ( 2 1 a 3 − 2 a + 1 ) x y + ( 2 1 a 3 + 2 1 a 2 − a − 1 ) y = x 3 + ( 2 1 a 3 + 2 1 a 2 − 2 a − 1 ) x 2 + ( − 7 a 3 − 1 0 a 2 + 8 a − 1 4 ) x − 2 7 3 a 3 − 6 2 a 2 + 4 8 a − 4
31.2-a5
31.2-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.2
31 31 3 1
− 31 -31 − 3 1
5.49059 5.49059 5 . 4 9 0 5 9
( 1 / 2 a 2 + a − 3 ) (1/2a^2+a-3) ( 1 / 2 a 2 + a − 3 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
682.5253613 682.5253613 6 8 2 . 5 2 5 3 6 1 3
1.066445877
− 13272722 31 a 3 − 31460719 62 a 2 + 56264160 31 a + 52085613 31 -\frac{13272722}{31} a^{3} - \frac{31460719}{62} a^{2} + \frac{56264160}{31} a + \frac{52085613}{31} − 3 1 1 3 2 7 2 7 2 2 a 3 − 6 2 3 1 4 6 0 7 1 9 a 2 + 3 1 5 6 2 6 4 1 6 0 a + 3 1 5 2 0 8 5 6 1 3
[ 1 2 a 3 − 2 a + 1 \bigl[\frac{1}{2} a^{3} - 2 a + 1 [ 2 1 a 3 − 2 a + 1 , 1 2 a 3 − 3 a \frac{1}{2} a^{3} - 3 a 2 1 a 3 − 3 a , 1 1 1 , a 3 + 1 2 a 2 − 6 a − 2 a^{3} + \frac{1}{2} a^{2} - 6 a - 2 a 3 + 2 1 a 2 − 6 a − 2 , − 1 2 a 3 − 9 2 a 2 + 8 a + 11 ] -\frac{1}{2} a^{3} - \frac{9}{2} a^{2} + 8 a + 11\bigr] − 2 1 a 3 − 2 9 a 2 + 8 a + 1 1 ]
y 2 + ( 1 2 a 3 − 2 a + 1 ) x y + y = x 3 + ( 1 2 a 3 − 3 a ) x 2 + ( a 3 + 1 2 a 2 − 6 a − 2 ) x − 1 2 a 3 − 9 2 a 2 + 8 a + 11 {y}^2+\left(\frac{1}{2}a^{3}-2a+1\right){x}{y}+{y}={x}^{3}+\left(\frac{1}{2}a^{3}-3a\right){x}^{2}+\left(a^{3}+\frac{1}{2}a^{2}-6a-2\right){x}-\frac{1}{2}a^{3}-\frac{9}{2}a^{2}+8a+11 y 2 + ( 2 1 a 3 − 2 a + 1 ) x y + y = x 3 + ( 2 1 a 3 − 3 a ) x 2 + ( a 3 + 2 1 a 2 − 6 a − 2 ) x − 2 1 a 3 − 2 9 a 2 + 8 a + 1 1
31.2-a6
31.2-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.2
31 31 3 1
3 1 6 31^{6} 3 1 6
5.49059 5.49059 5 . 4 9 0 5 9
( 1 / 2 a 2 + a − 3 ) (1/2a^2+a-3) ( 1 / 2 a 2 + a − 3 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2Cs , 3B
1 1 1
2 2 2
1 1 1
341.2626806 341.2626806 3 4 1 . 2 6 2 6 8 0 6
1.066445877
− 1052356342322505 887503681 a 3 − 1814035747952571 1775007362 a 2 + 5496246034509612 887503681 a + 4795702954303391 887503681 -\frac{1052356342322505}{887503681} a^{3} - \frac{1814035747952571}{1775007362} a^{2} + \frac{5496246034509612}{887503681} a + \frac{4795702954303391}{887503681} − 8 8 7 5 0 3 6 8 1 1 0 5 2 3 5 6 3 4 2 3 2 2 5 0 5 a 3 − 1 7 7 5 0 0 7 3 6 2 1 8 1 4 0 3 5 7 4 7 9 5 2 5 7 1 a 2 + 8 8 7 5 0 3 6 8 1 5 4 9 6 2 4 6 0 3 4 5 0 9 6 1 2 a + 8 8 7 5 0 3 6 8 1 4 7 9 5 7 0 2 9 5 4 3 0 3 3 9 1
[ 1 2 a 3 + 1 2 a 2 − 2 a \bigl[\frac{1}{2} a^{3} + \frac{1}{2} a^{2} - 2 a [ 2 1 a 3 + 2 1 a 2 − 2 a , a + 1 a + 1 a + 1 , 1 2 a 3 + 1 2 a 2 − a − 1 \frac{1}{2} a^{3} + \frac{1}{2} a^{2} - a - 1 2 1 a 3 + 2 1 a 2 − a − 1 , 11 2 a 3 − 12 a 2 − a + 6 \frac{11}{2} a^{3} - 12 a^{2} - a + 6 2 1 1 a 3 − 1 2 a 2 − a + 6 , − 53 2 a 3 + 125 2 a 2 + 20 a − 49 ] -\frac{53}{2} a^{3} + \frac{125}{2} a^{2} + 20 a - 49\bigr] − 2 5 3 a 3 + 2 1 2 5 a 2 + 2 0 a − 4 9 ]
y 2 + ( 1 2 a 3 + 1 2 a 2 − 2 a ) x y + ( 1 2 a 3 + 1 2 a 2 − a − 1 ) y = x 3 + ( a + 1 ) x 2 + ( 11 2 a 3 − 12 a 2 − a + 6 ) x − 53 2 a 3 + 125 2 a 2 + 20 a − 49 {y}^2+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-2a\right){x}{y}+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-a-1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(\frac{11}{2}a^{3}-12a^{2}-a+6\right){x}-\frac{53}{2}a^{3}+\frac{125}{2}a^{2}+20a-49 y 2 + ( 2 1 a 3 + 2 1 a 2 − 2 a ) x y + ( 2 1 a 3 + 2 1 a 2 − a − 1 ) y = x 3 + ( a + 1 ) x 2 + ( 2 1 1 a 3 − 1 2 a 2 − a + 6 ) x − 2 5 3 a 3 + 2 1 2 5 a 2 + 2 0 a − 4 9
31.2-a7
31.2-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.2
31 31 3 1
3 1 3 31^{3} 3 1 3
5.49059 5.49059 5 . 4 9 0 5 9
( 1 / 2 a 2 + a − 3 ) (1/2a^2+a-3) ( 1 / 2 a 2 + a − 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
170.6313403 170.6313403 1 7 0 . 6 3 1 3 4 0 3
1.066445877
− 325590951970677471 29791 a 3 − 569082138084219041 59582 a 2 + 1704767944112086491 29791 a + 1489994440239595156 29791 -\frac{325590951970677471}{29791} a^{3} - \frac{569082138084219041}{59582} a^{2} + \frac{1704767944112086491}{29791} a + \frac{1489994440239595156}{29791} − 2 9 7 9 1 3 2 5 5 9 0 9 5 1 9 7 0 6 7 7 4 7 1 a 3 − 5 9 5 8 2 5 6 9 0 8 2 1 3 8 0 8 4 2 1 9 0 4 1 a 2 + 2 9 7 9 1 1 7 0 4 7 6 7 9 4 4 1 1 2 0 8 6 4 9 1 a + 2 9 7 9 1 1 4 8 9 9 9 4 4 4 0 2 3 9 5 9 5 1 5 6
[ 1 2 a 3 + 1 2 a 2 − 2 a \bigl[\frac{1}{2} a^{3} + \frac{1}{2} a^{2} - 2 a [ 2 1 a 3 + 2 1 a 2 − 2 a , a + 1 a + 1 a + 1 , 1 2 a 3 + 1 2 a 2 − a − 1 \frac{1}{2} a^{3} + \frac{1}{2} a^{2} - a - 1 2 1 a 3 + 2 1 a 2 − a − 1 , 88 a 3 − 207 a 2 − 36 a + 111 88 a^{3} - 207 a^{2} - 36 a + 111 8 8 a 3 − 2 0 7 a 2 − 3 6 a + 1 1 1 , − 1609 a 3 + 7485 2 a 2 + 1071 a − 2772 ] -1609 a^{3} + \frac{7485}{2} a^{2} + 1071 a - 2772\bigr] − 1 6 0 9 a 3 + 2 7 4 8 5 a 2 + 1 0 7 1 a − 2 7 7 2 ]
y 2 + ( 1 2 a 3 + 1 2 a 2 − 2 a ) x y + ( 1 2 a 3 + 1 2 a 2 − a − 1 ) y = x 3 + ( a + 1 ) x 2 + ( 88 a 3 − 207 a 2 − 36 a + 111 ) x − 1609 a 3 + 7485 2 a 2 + 1071 a − 2772 {y}^2+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-2a\right){x}{y}+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-a-1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(88a^{3}-207a^{2}-36a+111\right){x}-1609a^{3}+\frac{7485}{2}a^{2}+1071a-2772 y 2 + ( 2 1 a 3 + 2 1 a 2 − 2 a ) x y + ( 2 1 a 3 + 2 1 a 2 − a − 1 ) y = x 3 + ( a + 1 ) x 2 + ( 8 8 a 3 − 2 0 7 a 2 − 3 6 a + 1 1 1 ) x − 1 6 0 9 a 3 + 2 7 4 8 5 a 2 + 1 0 7 1 a − 2 7 7 2
31.2-a8
31.2-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.2
31 31 3 1
− 3 1 4 - 31^{4} − 3 1 4
5.49059 5.49059 5 . 4 9 0 5 9
( 1 / 2 a 2 + a − 3 ) (1/2a^2+a-3) ( 1 / 2 a 2 + a − 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
4 4 4
2 2 2
1 1 1
21.32891754 21.32891754 2 1 . 3 2 8 9 1 7 5 4
1.066445877
1322682524619398114443 1847042 a 3 − 1156066776906178179193 1847042 a 2 − 3462828026065047555360 923521 a + 3026622621078757311573 923521 \frac{1322682524619398114443}{1847042} a^{3} - \frac{1156066776906178179193}{1847042} a^{2} - \frac{3462828026065047555360}{923521} a + \frac{3026622621078757311573}{923521} 1 8 4 7 0 4 2 1 3 2 2 6 8 2 5 2 4 6 1 9 3 9 8 1 1 4 4 4 3 a 3 − 1 8 4 7 0 4 2 1 1 5 6 0 6 6 7 7 6 9 0 6 1 7 8 1 7 9 1 9 3 a 2 − 9 2 3 5 2 1 3 4 6 2 8 2 8 0 2 6 0 6 5 0 4 7 5 5 5 3 6 0 a + 9 2 3 5 2 1 3 0 2 6 6 2 2 6 2 1 0 7 8 7 5 7 3 1 1 5 7 3
[ 1 2 a 3 + 1 2 a 2 − a − 1 \bigl[\frac{1}{2} a^{3} + \frac{1}{2} a^{2} - a - 1 [ 2 1 a 3 + 2 1 a 2 − a − 1 , 1 2 a 2 + a − 1 \frac{1}{2} a^{2} + a - 1 2 1 a 2 + a − 1 , 1 2 a 3 + 1 2 a 2 − 2 a \frac{1}{2} a^{3} + \frac{1}{2} a^{2} - 2 a 2 1 a 3 + 2 1 a 2 − 2 a , − 147 2 a 3 − 54 a 2 + 381 a + 272 -\frac{147}{2} a^{3} - 54 a^{2} + 381 a + 272 − 2 1 4 7 a 3 − 5 4 a 2 + 3 8 1 a + 2 7 2 , − 423 a 3 − 342 a 2 + 2215 a + 1788 ] -423 a^{3} - 342 a^{2} + 2215 a + 1788\bigr] − 4 2 3 a 3 − 3 4 2 a 2 + 2 2 1 5 a + 1 7 8 8 ]
y 2 + ( 1 2 a 3 + 1 2 a 2 − a − 1 ) x y + ( 1 2 a 3 + 1 2 a 2 − 2 a ) y = x 3 + ( 1 2 a 2 + a − 1 ) x 2 + ( − 147 2 a 3 − 54 a 2 + 381 a + 272 ) x − 423 a 3 − 342 a 2 + 2215 a + 1788 {y}^2+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-a-1\right){x}{y}+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-2a\right){y}={x}^{3}+\left(\frac{1}{2}a^{2}+a-1\right){x}^{2}+\left(-\frac{147}{2}a^{3}-54a^{2}+381a+272\right){x}-423a^{3}-342a^{2}+2215a+1788 y 2 + ( 2 1 a 3 + 2 1 a 2 − a − 1 ) x y + ( 2 1 a 3 + 2 1 a 2 − 2 a ) y = x 3 + ( 2 1 a 2 + a − 1 ) x 2 + ( − 2 1 4 7 a 3 − 5 4 a 2 + 3 8 1 a + 2 7 2 ) x − 4 2 3 a 3 − 3 4 2 a 2 + 2 2 1 5 a + 1 7 8 8
31.3-a1
31.3-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.3
31 31 3 1
31 31 3 1
5.49059 5.49059 5 . 4 9 0 5 9
( − 1 / 2 a 2 + a + 3 ) (-1/2a^2+a+3) ( − 1 / 2 a 2 + a + 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
170.6313403 170.6313403 1 7 0 . 6 3 1 3 4 0 3
1.066445877
− 44185790224430943294130347 62 a 3 + 101107940561583547666668071 62 a 2 + 16877470045959775925680416 31 a − 38619796762020784366501787 31 -\frac{44185790224430943294130347}{62} a^{3} + \frac{101107940561583547666668071}{62} a^{2} + \frac{16877470045959775925680416}{31} a - \frac{38619796762020784366501787}{31} − 6 2 4 4 1 8 5 7 9 0 2 2 4 4 3 0 9 4 3 2 9 4 1 3 0 3 4 7 a 3 + 6 2 1 0 1 1 0 7 9 4 0 5 6 1 5 8 3 5 4 7 6 6 6 6 6 8 0 7 1 a 2 + 3 1 1 6 8 7 7 4 7 0 0 4 5 9 5 9 7 7 5 9 2 5 6 8 0 4 1 6 a − 3 1 3 8 6 1 9 7 9 6 7 6 2 0 2 0 7 8 4 3 6 6 5 0 1 7 8 7
[ 1 2 a 3 − 2 a + 1 \bigl[\frac{1}{2} a^{3} - 2 a + 1 [ 2 1 a 3 − 2 a + 1 , 1 2 a 3 − a \frac{1}{2} a^{3} - a 2 1 a 3 − a , 1 2 a 3 − 2 a + 1 \frac{1}{2} a^{3} - 2 a + 1 2 1 a 3 − 2 a + 1 , − 21 a 3 − 45 2 a 2 + 51 a − 22 -21 a^{3} - \frac{45}{2} a^{2} + 51 a - 22 − 2 1 a 3 − 2 4 5 a 2 + 5 1 a − 2 2 , − 3 2 a 3 + 209 2 a 2 + 145 a − 213 ] -\frac{3}{2} a^{3} + \frac{209}{2} a^{2} + 145 a - 213\bigr] − 2 3 a 3 + 2 2 0 9 a 2 + 1 4 5 a − 2 1 3 ]
y 2 + ( 1 2 a 3 − 2 a + 1 ) x y + ( 1 2 a 3 − 2 a + 1 ) y = x 3 + ( 1 2 a 3 − a ) x 2 + ( − 21 a 3 − 45 2 a 2 + 51 a − 22 ) x − 3 2 a 3 + 209 2 a 2 + 145 a − 213 {y}^2+\left(\frac{1}{2}a^{3}-2a+1\right){x}{y}+\left(\frac{1}{2}a^{3}-2a+1\right){y}={x}^{3}+\left(\frac{1}{2}a^{3}-a\right){x}^{2}+\left(-21a^{3}-\frac{45}{2}a^{2}+51a-22\right){x}-\frac{3}{2}a^{3}+\frac{209}{2}a^{2}+145a-213 y 2 + ( 2 1 a 3 − 2 a + 1 ) x y + ( 2 1 a 3 − 2 a + 1 ) y = x 3 + ( 2 1 a 3 − a ) x 2 + ( − 2 1 a 3 − 2 4 5 a 2 + 5 1 a − 2 2 ) x − 2 3 a 3 + 2 2 0 9 a 2 + 1 4 5 a − 2 1 3
31.3-a2
31.3-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.3
31 31 3 1
3 1 2 31^{2} 3 1 2
5.49059 5.49059 5 . 4 9 0 5 9
( − 1 / 2 a 2 + a + 3 ) (-1/2a^2+a+3) ( − 1 / 2 a 2 + a + 3 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2Cs , 3B
1 1 1
2 2 2
1 1 1
341.2626806 341.2626806 3 4 1 . 2 6 2 6 8 0 6
1.066445877
− 179335930448310 961 a 3 + 820671155387481 1922 a 2 + 137041592216922 961 a − 313432534555102 961 -\frac{179335930448310}{961} a^{3} + \frac{820671155387481}{1922} a^{2} + \frac{137041592216922}{961} a - \frac{313432534555102}{961} − 9 6 1 1 7 9 3 3 5 9 3 0 4 4 8 3 1 0 a 3 + 1 9 2 2 8 2 0 6 7 1 1 5 5 3 8 7 4 8 1 a 2 + 9 6 1 1 3 7 0 4 1 5 9 2 2 1 6 9 2 2 a − 9 6 1 3 1 3 4 3 2 5 3 4 5 5 5 1 0 2
[ 1 2 a 3 − 2 a + 1 \bigl[\frac{1}{2} a^{3} - 2 a + 1 [ 2 1 a 3 − 2 a + 1 , 1 2 a 3 − a \frac{1}{2} a^{3} - a 2 1 a 3 − a , 1 2 a 3 − 2 a + 1 \frac{1}{2} a^{3} - 2 a + 1 2 1 a 3 − 2 a + 1 , − 6 a 3 − 10 a 2 + 6 a − 2 -6 a^{3} - 10 a^{2} + 6 a - 2 − 6 a 3 − 1 0 a 2 + 6 a − 2 , − 65 2 a 3 − 151 2 a 2 + 21 a + 53 ] -\frac{65}{2} a^{3} - \frac{151}{2} a^{2} + 21 a + 53\bigr] − 2 6 5 a 3 − 2 1 5 1 a 2 + 2 1 a + 5 3 ]
y 2 + ( 1 2 a 3 − 2 a + 1 ) x y + ( 1 2 a 3 − 2 a + 1 ) y = x 3 + ( 1 2 a 3 − a ) x 2 + ( − 6 a 3 − 10 a 2 + 6 a − 2 ) x − 65 2 a 3 − 151 2 a 2 + 21 a + 53 {y}^2+\left(\frac{1}{2}a^{3}-2a+1\right){x}{y}+\left(\frac{1}{2}a^{3}-2a+1\right){y}={x}^{3}+\left(\frac{1}{2}a^{3}-a\right){x}^{2}+\left(-6a^{3}-10a^{2}+6a-2\right){x}-\frac{65}{2}a^{3}-\frac{151}{2}a^{2}+21a+53 y 2 + ( 2 1 a 3 − 2 a + 1 ) x y + ( 2 1 a 3 − 2 a + 1 ) y = x 3 + ( 2 1 a 3 − a ) x 2 + ( − 6 a 3 − 1 0 a 2 + 6 a − 2 ) x − 2 6 5 a 3 − 2 1 5 1 a 2 + 2 1 a + 5 3
31.3-a3
31.3-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.3
31 31 3 1
− 3 1 3 - 31^{3} − 3 1 3
5.49059 5.49059 5 . 4 9 0 5 9
( − 1 / 2 a 2 + a + 3 ) (-1/2a^2+a+3) ( − 1 / 2 a 2 + a + 3 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
682.5253613 682.5253613 6 8 2 . 5 2 5 3 6 1 3
1.066445877
8156784 29791 a 3 − 36603857 59582 a 2 − 43052260 29791 a + 96535104 29791 \frac{8156784}{29791} a^{3} - \frac{36603857}{59582} a^{2} - \frac{43052260}{29791} a + \frac{96535104}{29791} 2 9 7 9 1 8 1 5 6 7 8 4 a 3 − 5 9 5 8 2 3 6 6 0 3 8 5 7 a 2 − 2 9 7 9 1 4 3 0 5 2 2 6 0 a + 2 9 7 9 1 9 6 5 3 5 1 0 4
[ 1 2 a 3 + 1 2 a 2 − 2 a \bigl[\frac{1}{2} a^{3} + \frac{1}{2} a^{2} - 2 a [ 2 1 a 3 + 2 1 a 2 − 2 a , − 1 2 a 3 + 3 a + 1 -\frac{1}{2} a^{3} + 3 a + 1 − 2 1 a 3 + 3 a + 1 , 1 2 a 2 + a − 1 \frac{1}{2} a^{2} + a - 1 2 1 a 2 + a − 1 , − 1 2 a 3 − 1 2 a 2 + 3 a + 4 -\frac{1}{2} a^{3} - \frac{1}{2} a^{2} + 3 a + 4 − 2 1 a 3 − 2 1 a 2 + 3 a + 4 , 1 2 a 3 + 2 a 2 + 2 a ] \frac{1}{2} a^{3} + 2 a^{2} + 2 a\bigr] 2 1 a 3 + 2 a 2 + 2 a ]
y 2 + ( 1 2 a 3 + 1 2 a 2 − 2 a ) x y + ( 1 2 a 2 + a − 1 ) y = x 3 + ( − 1 2 a 3 + 3 a + 1 ) x 2 + ( − 1 2 a 3 − 1 2 a 2 + 3 a + 4 ) x + 1 2 a 3 + 2 a 2 + 2 a {y}^2+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-2a\right){x}{y}+\left(\frac{1}{2}a^{2}+a-1\right){y}={x}^{3}+\left(-\frac{1}{2}a^{3}+3a+1\right){x}^{2}+\left(-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}+3a+4\right){x}+\frac{1}{2}a^{3}+2a^{2}+2a y 2 + ( 2 1 a 3 + 2 1 a 2 − 2 a ) x y + ( 2 1 a 2 + a − 1 ) y = x 3 + ( − 2 1 a 3 + 3 a + 1 ) x 2 + ( − 2 1 a 3 − 2 1 a 2 + 3 a + 4 ) x + 2 1 a 3 + 2 a 2 + 2 a
31.3-a4
31.3-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.3
31 31 3 1
− 3 1 12 - 31^{12} − 3 1 1 2
5.49059 5.49059 5 . 4 9 0 5 9
( − 1 / 2 a 2 + a + 3 ) (-1/2a^2+a+3) ( − 1 / 2 a 2 + a + 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
4 4 4
2 2 2
1 1 1
21.32891754 21.32891754 2 1 . 3 2 8 9 1 7 5 4
1.066445877
− 18294256594913191872513 787662783788549761 a 3 − 29872156558690483602305 1575325567577099522 a 2 + 95382125225553480591493 787662783788549761 a + 80704205874773584791012 787662783788549761 -\frac{18294256594913191872513}{787662783788549761} a^{3} - \frac{29872156558690483602305}{1575325567577099522} a^{2} + \frac{95382125225553480591493}{787662783788549761} a + \frac{80704205874773584791012}{787662783788549761} − 7 8 7 6 6 2 7 8 3 7 8 8 5 4 9 7 6 1 1 8 2 9 4 2 5 6 5 9 4 9 1 3 1 9 1 8 7 2 5 1 3 a 3 − 1 5 7 5 3 2 5 5 6 7 5 7 7 0 9 9 5 2 2 2 9 8 7 2 1 5 6 5 5 8 6 9 0 4 8 3 6 0 2 3 0 5 a 2 + 7 8 7 6 6 2 7 8 3 7 8 8 5 4 9 7 6 1 9 5 3 8 2 1 2 5 2 2 5 5 5 3 4 8 0 5 9 1 4 9 3 a + 7 8 7 6 6 2 7 8 3 7 8 8 5 4 9 7 6 1 8 0 7 0 4 2 0 5 8 7 4 7 7 3 5 8 4 7 9 1 0 1 2
[ 1 2 a 2 + a − 1 \bigl[\frac{1}{2} a^{2} + a - 1 [ 2 1 a 2 + a − 1 , 1 2 a 3 − 1 2 a 2 − a + 2 \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - a + 2 2 1 a 3 − 2 1 a 2 − a + 2 , 1 2 a 3 − 2 a + 1 \frac{1}{2} a^{3} - 2 a + 1 2 1 a 3 − 2 a + 1 , 45 a 3 − 199 2 a 2 − 37 a + 75 45 a^{3} - \frac{199}{2} a^{2} - 37 a + 75 4 5 a 3 − 2 1 9 9 a 2 − 3 7 a + 7 5 , 673 2 a 3 − 1537 2 a 2 − 256 a + 582 ] \frac{673}{2} a^{3} - \frac{1537}{2} a^{2} - 256 a + 582\bigr] 2 6 7 3 a 3 − 2 1 5 3 7 a 2 − 2 5 6 a + 5 8 2 ]
y 2 + ( 1 2 a 2 + a − 1 ) x y + ( 1 2 a 3 − 2 a + 1 ) y = x 3 + ( 1 2 a 3 − 1 2 a 2 − a + 2 ) x 2 + ( 45 a 3 − 199 2 a 2 − 37 a + 75 ) x + 673 2 a 3 − 1537 2 a 2 − 256 a + 582 {y}^2+\left(\frac{1}{2}a^{2}+a-1\right){x}{y}+\left(\frac{1}{2}a^{3}-2a+1\right){y}={x}^{3}+\left(\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-a+2\right){x}^{2}+\left(45a^{3}-\frac{199}{2}a^{2}-37a+75\right){x}+\frac{673}{2}a^{3}-\frac{1537}{2}a^{2}-256a+582 y 2 + ( 2 1 a 2 + a − 1 ) x y + ( 2 1 a 3 − 2 a + 1 ) y = x 3 + ( 2 1 a 3 − 2 1 a 2 − a + 2 ) x 2 + ( 4 5 a 3 − 2 1 9 9 a 2 − 3 7 a + 7 5 ) x + 2 6 7 3 a 3 − 2 1 5 3 7 a 2 − 2 5 6 a + 5 8 2
31.3-a5
31.3-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.3
31 31 3 1
− 31 -31 − 3 1
5.49059 5.49059 5 . 4 9 0 5 9
( − 1 / 2 a 2 + a + 3 ) (-1/2a^2+a+3) ( − 1 / 2 a 2 + a + 3 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
682.5253613 682.5253613 6 8 2 . 5 2 5 3 6 1 3
1.066445877
13272722 31 a 3 − 31460719 62 a 2 − 56264160 31 a + 52085613 31 \frac{13272722}{31} a^{3} - \frac{31460719}{62} a^{2} - \frac{56264160}{31} a + \frac{52085613}{31} 3 1 1 3 2 7 2 7 2 2 a 3 − 6 2 3 1 4 6 0 7 1 9 a 2 − 3 1 5 6 2 6 4 1 6 0 a + 3 1 5 2 0 8 5 6 1 3
[ 1 2 a 3 − 2 a + 1 \bigl[\frac{1}{2} a^{3} - 2 a + 1 [ 2 1 a 3 − 2 a + 1 , 1 2 a 3 − a \frac{1}{2} a^{3} - a 2 1 a 3 − a , 1 2 a 3 − 2 a + 1 \frac{1}{2} a^{3} - 2 a + 1 2 1 a 3 − 2 a + 1 , − a 3 + 5 2 a 2 + 6 a − 7 -a^{3} + \frac{5}{2} a^{2} + 6 a - 7 − a 3 + 2 5 a 2 + 6 a − 7 , − 1 2 a 3 − 5 2 a 2 − a + 3 ] -\frac{1}{2} a^{3} - \frac{5}{2} a^{2} - a + 3\bigr] − 2 1 a 3 − 2 5 a 2 − a + 3 ]
y 2 + ( 1 2 a 3 − 2 a + 1 ) x y + ( 1 2 a 3 − 2 a + 1 ) y = x 3 + ( 1 2 a 3 − a ) x 2 + ( − a 3 + 5 2 a 2 + 6 a − 7 ) x − 1 2 a 3 − 5 2 a 2 − a + 3 {y}^2+\left(\frac{1}{2}a^{3}-2a+1\right){x}{y}+\left(\frac{1}{2}a^{3}-2a+1\right){y}={x}^{3}+\left(\frac{1}{2}a^{3}-a\right){x}^{2}+\left(-a^{3}+\frac{5}{2}a^{2}+6a-7\right){x}-\frac{1}{2}a^{3}-\frac{5}{2}a^{2}-a+3 y 2 + ( 2 1 a 3 − 2 a + 1 ) x y + ( 2 1 a 3 − 2 a + 1 ) y = x 3 + ( 2 1 a 3 − a ) x 2 + ( − a 3 + 2 5 a 2 + 6 a − 7 ) x − 2 1 a 3 − 2 5 a 2 − a + 3
31.3-a6
31.3-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.3
31 31 3 1
3 1 6 31^{6} 3 1 6
5.49059 5.49059 5 . 4 9 0 5 9
( − 1 / 2 a 2 + a + 3 ) (-1/2a^2+a+3) ( − 1 / 2 a 2 + a + 3 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2Cs , 3B
1 1 1
2 2 2
1 1 1
341.2626806 341.2626806 3 4 1 . 2 6 2 6 8 0 6
1.066445877
1052356342322505 887503681 a 3 − 1814035747952571 1775007362 a 2 − 5496246034509612 887503681 a + 4795702954303391 887503681 \frac{1052356342322505}{887503681} a^{3} - \frac{1814035747952571}{1775007362} a^{2} - \frac{5496246034509612}{887503681} a + \frac{4795702954303391}{887503681} 8 8 7 5 0 3 6 8 1 1 0 5 2 3 5 6 3 4 2 3 2 2 5 0 5 a 3 − 1 7 7 5 0 0 7 3 6 2 1 8 1 4 0 3 5 7 4 7 9 5 2 5 7 1 a 2 − 8 8 7 5 0 3 6 8 1 5 4 9 6 2 4 6 0 3 4 5 0 9 6 1 2 a + 8 8 7 5 0 3 6 8 1 4 7 9 5 7 0 2 9 5 4 3 0 3 3 9 1
[ 1 2 a 3 + 1 2 a 2 − a − 1 \bigl[\frac{1}{2} a^{3} + \frac{1}{2} a^{2} - a - 1 [ 2 1 a 3 + 2 1 a 2 − a − 1 , a − 1 a - 1 a − 1 , 1 2 a 2 + a \frac{1}{2} a^{2} + a 2 1 a 2 + a , 4 a 3 + 5 a 2 − 23 a − 29 4 a^{3} + 5 a^{2} - 23 a - 29 4 a 3 + 5 a 2 − 2 3 a − 2 9 , − 5 2 a 3 − 3 2 a 2 + 12 a + 5 ] -\frac{5}{2} a^{3} - \frac{3}{2} a^{2} + 12 a + 5\bigr] − 2 5 a 3 − 2 3 a 2 + 1 2 a + 5 ]
y 2 + ( 1 2 a 3 + 1 2 a 2 − a − 1 ) x y + ( 1 2 a 2 + a ) y = x 3 + ( a − 1 ) x 2 + ( 4 a 3 + 5 a 2 − 23 a − 29 ) x − 5 2 a 3 − 3 2 a 2 + 12 a + 5 {y}^2+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-a-1\right){x}{y}+\left(\frac{1}{2}a^{2}+a\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(4a^{3}+5a^{2}-23a-29\right){x}-\frac{5}{2}a^{3}-\frac{3}{2}a^{2}+12a+5 y 2 + ( 2 1 a 3 + 2 1 a 2 − a − 1 ) x y + ( 2 1 a 2 + a ) y = x 3 + ( a − 1 ) x 2 + ( 4 a 3 + 5 a 2 − 2 3 a − 2 9 ) x − 2 5 a 3 − 2 3 a 2 + 1 2 a + 5
31.3-a7
31.3-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.3
31 31 3 1
3 1 3 31^{3} 3 1 3
5.49059 5.49059 5 . 4 9 0 5 9
( − 1 / 2 a 2 + a + 3 ) (-1/2a^2+a+3) ( − 1 / 2 a 2 + a + 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
170.6313403 170.6313403 1 7 0 . 6 3 1 3 4 0 3
1.066445877
325590951970677471 29791 a 3 − 569082138084219041 59582 a 2 − 1704767944112086491 29791 a + 1489994440239595156 29791 \frac{325590951970677471}{29791} a^{3} - \frac{569082138084219041}{59582} a^{2} - \frac{1704767944112086491}{29791} a + \frac{1489994440239595156}{29791} 2 9 7 9 1 3 2 5 5 9 0 9 5 1 9 7 0 6 7 7 4 7 1 a 3 − 5 9 5 8 2 5 6 9 0 8 2 1 3 8 0 8 4 2 1 9 0 4 1 a 2 − 2 9 7 9 1 1 7 0 4 7 6 7 9 4 4 1 1 2 0 8 6 4 9 1 a + 2 9 7 9 1 1 4 8 9 9 9 4 4 4 0 2 3 9 5 9 5 1 5 6
[ 1 2 a 3 + 1 2 a 2 − a − 1 \bigl[\frac{1}{2} a^{3} + \frac{1}{2} a^{2} - a - 1 [ 2 1 a 3 + 2 1 a 2 − a − 1 , a − 1 a - 1 a − 1 , 1 2 a 2 + a \frac{1}{2} a^{2} + a 2 1 a 2 + a , 34 a 3 + 85 2 a 2 − 238 a − 359 34 a^{3} + \frac{85}{2} a^{2} - 238 a - 359 3 4 a 3 + 2 8 5 a 2 − 2 3 8 a − 3 5 9 , − 586 a 3 − 312 a 2 + 3301 a + 2167 ] -586 a^{3} - 312 a^{2} + 3301 a + 2167\bigr] − 5 8 6 a 3 − 3 1 2 a 2 + 3 3 0 1 a + 2 1 6 7 ]
y 2 + ( 1 2 a 3 + 1 2 a 2 − a − 1 ) x y + ( 1 2 a 2 + a ) y = x 3 + ( a − 1 ) x 2 + ( 34 a 3 + 85 2 a 2 − 238 a − 359 ) x − 586 a 3 − 312 a 2 + 3301 a + 2167 {y}^2+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-a-1\right){x}{y}+\left(\frac{1}{2}a^{2}+a\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(34a^{3}+\frac{85}{2}a^{2}-238a-359\right){x}-586a^{3}-312a^{2}+3301a+2167 y 2 + ( 2 1 a 3 + 2 1 a 2 − a − 1 ) x y + ( 2 1 a 2 + a ) y = x 3 + ( a − 1 ) x 2 + ( 3 4 a 3 + 2 8 5 a 2 − 2 3 8 a − 3 5 9 ) x − 5 8 6 a 3 − 3 1 2 a 2 + 3 3 0 1 a + 2 1 6 7
31.3-a8
31.3-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.3
31 31 3 1
− 3 1 4 - 31^{4} − 3 1 4
5.49059 5.49059 5 . 4 9 0 5 9
( − 1 / 2 a 2 + a + 3 ) (-1/2a^2+a+3) ( − 1 / 2 a 2 + a + 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
4 4 4
2 2 2
1 1 1
21.32891754 21.32891754 2 1 . 3 2 8 9 1 7 5 4
1.066445877
− 1322682524619398114443 1847042 a 3 − 1156066776906178179193 1847042 a 2 + 3462828026065047555360 923521 a + 3026622621078757311573 923521 -\frac{1322682524619398114443}{1847042} a^{3} - \frac{1156066776906178179193}{1847042} a^{2} + \frac{3462828026065047555360}{923521} a + \frac{3026622621078757311573}{923521} − 1 8 4 7 0 4 2 1 3 2 2 6 8 2 5 2 4 6 1 9 3 9 8 1 1 4 4 4 3 a 3 − 1 8 4 7 0 4 2 1 1 5 6 0 6 6 7 7 6 9 0 6 1 7 8 1 7 9 1 9 3 a 2 + 9 2 3 5 2 1 3 4 6 2 8 2 8 0 2 6 0 6 5 0 4 7 5 5 5 3 6 0 a + 9 2 3 5 2 1 3 0 2 6 6 2 2 6 2 1 0 7 8 7 5 7 3 1 1 5 7 3
[ 1 2 a 3 + 1 2 a 2 − 2 a \bigl[\frac{1}{2} a^{3} + \frac{1}{2} a^{2} - 2 a [ 2 1 a 3 + 2 1 a 2 − 2 a , a a a , 1 2 a 3 − a \frac{1}{2} a^{3} - a 2 1 a 3 − a , 26 a 3 − 93 2 a 2 − 67 a + 69 26 a^{3} - \frac{93}{2} a^{2} - 67 a + 69 2 6 a 3 − 2 9 3 a 2 − 6 7 a + 6 9 , − 107 a 3 + 262 a 2 − 22 a − 121 ] -107 a^{3} + 262 a^{2} - 22 a - 121\bigr] − 1 0 7 a 3 + 2 6 2 a 2 − 2 2 a − 1 2 1 ]
y 2 + ( 1 2 a 3 + 1 2 a 2 − 2 a ) x y + ( 1 2 a 3 − a ) y = x 3 + a x 2 + ( 26 a 3 − 93 2 a 2 − 67 a + 69 ) x − 107 a 3 + 262 a 2 − 22 a − 121 {y}^2+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-2a\right){x}{y}+\left(\frac{1}{2}a^{3}-a\right){y}={x}^{3}+a{x}^{2}+\left(26a^{3}-\frac{93}{2}a^{2}-67a+69\right){x}-107a^{3}+262a^{2}-22a-121 y 2 + ( 2 1 a 3 + 2 1 a 2 − 2 a ) x y + ( 2 1 a 3 − a ) y = x 3 + a x 2 + ( 2 6 a 3 − 2 9 3 a 2 − 6 7 a + 6 9 ) x − 1 0 7 a 3 + 2 6 2 a 2 − 2 2 a − 1 2 1
31.4-a1
31.4-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.4
31 31 3 1
− 3 1 4 - 31^{4} − 3 1 4
5.49059 5.49059 5 . 4 9 0 5 9
( 1 / 2 a 3 − 1 / 2 a 2 − 3 a ) (1/2a^3-1/2a^2-3a) ( 1 / 2 a 3 − 1 / 2 a 2 − 3 a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
4 4 4
2 2 2
1 1 1
21.32891754 21.32891754 2 1 . 3 2 8 9 1 7 5 4
1.066445877
505219547793146787969 1847042 a 3 + 1156066776906178179193 1847042 a 2 − 192976118760042249464 923521 a − 441577709639777226006 923521 \frac{505219547793146787969}{1847042} a^{3} + \frac{1156066776906178179193}{1847042} a^{2} - \frac{192976118760042249464}{923521} a - \frac{441577709639777226006}{923521} 1 8 4 7 0 4 2 5 0 5 2 1 9 5 4 7 7 9 3 1 4 6 7 8 7 9 6 9 a 3 + 1 8 4 7 0 4 2 1 1 5 6 0 6 6 7 7 6 9 0 6 1 7 8 1 7 9 1 9 3 a 2 − 9 2 3 5 2 1 1 9 2 9 7 6 1 1 8 7 6 0 0 4 2 2 4 9 4 6 4 a − 9 2 3 5 2 1 4 4 1 5 7 7 7 0 9 6 3 9 7 7 7 2 2 6 0 0 6
[ 1 2 a 2 + a \bigl[\frac{1}{2} a^{2} + a [ 2 1 a 2 + a , − 1 2 a 3 − 1 2 a 2 + 2 a + 1 -\frac{1}{2} a^{3} - \frac{1}{2} a^{2} + 2 a + 1 − 2 1 a 3 − 2 1 a 2 + 2 a + 1 , a a a , − 34 a 3 + 57 a 2 + 53 a − 69 -34 a^{3} + 57 a^{2} + 53 a - 69 − 3 4 a 3 + 5 7 a 2 + 5 3 a − 6 9 , − 140 a 3 + 302 a 2 + 22 a − 161 ] -140 a^{3} + 302 a^{2} + 22 a - 161\bigr] − 1 4 0 a 3 + 3 0 2 a 2 + 2 2 a − 1 6 1 ]
y 2 + ( 1 2 a 2 + a ) x y + a y = x 3 + ( − 1 2 a 3 − 1 2 a 2 + 2 a + 1 ) x 2 + ( − 34 a 3 + 57 a 2 + 53 a − 69 ) x − 140 a 3 + 302 a 2 + 22 a − 161 {y}^2+\left(\frac{1}{2}a^{2}+a\right){x}{y}+a{y}={x}^{3}+\left(-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}+2a+1\right){x}^{2}+\left(-34a^{3}+57a^{2}+53a-69\right){x}-140a^{3}+302a^{2}+22a-161 y 2 + ( 2 1 a 2 + a ) x y + a y = x 3 + ( − 2 1 a 3 − 2 1 a 2 + 2 a + 1 ) x 2 + ( − 3 4 a 3 + 5 7 a 2 + 5 3 a − 6 9 ) x − 1 4 0 a 3 + 3 0 2 a 2 + 2 2 a − 1 6 1
31.4-a2
31.4-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.4
31 31 3 1
3 1 3 31^{3} 3 1 3
5.49059 5.49059 5 . 4 9 0 5 9
( 1 / 2 a 3 − 1 / 2 a 2 − 3 a ) (1/2a^3-1/2a^2-3a) ( 1 / 2 a 3 − 1 / 2 a 2 − 3 a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
170.6313403 170.6313403 1 7 0 . 6 3 1 3 4 0 3
1.066445877
− 248777767711978335 59582 a 3 + 569082138084219041 59582 a 2 + 95151399194580063 29791 a − 217251974013061967 29791 -\frac{248777767711978335}{59582} a^{3} + \frac{569082138084219041}{59582} a^{2} + \frac{95151399194580063}{29791} a - \frac{217251974013061967}{29791} − 5 9 5 8 2 2 4 8 7 7 7 7 6 7 7 1 1 9 7 8 3 3 5 a 3 + 5 9 5 8 2 5 6 9 0 8 2 1 3 8 0 8 4 2 1 9 0 4 1 a 2 + 2 9 7 9 1 9 5 1 5 1 3 9 9 1 9 4 5 8 0 0 6 3 a − 2 9 7 9 1 2 1 7 2 5 1 9 7 4 0 1 3 0 6 1 9 6 7
[ 1 2 a 3 + 1 2 a 2 − a − 1 \bigl[\frac{1}{2} a^{3} + \frac{1}{2} a^{2} - a - 1 [ 2 1 a 3 + 2 1 a 2 − a − 1 , − 1 2 a 3 − 1 2 a 2 + a + 1 -\frac{1}{2} a^{3} - \frac{1}{2} a^{2} + a + 1 − 2 1 a 3 − 2 1 a 2 + a + 1 , 1 2 a 3 + 1 2 a 2 − a − 1 \frac{1}{2} a^{3} + \frac{1}{2} a^{2} - a - 1 2 1 a 3 + 2 1 a 2 − a − 1 , − 153 a 3 − 248 a 2 + 243 a + 22 -153 a^{3} - 248 a^{2} + 243 a + 22 − 1 5 3 a 3 − 2 4 8 a 2 + 2 4 3 a + 2 2 , 2540 a 3 + 10239 2 a 2 − 2876 a − 2955 ] 2540 a^{3} + \frac{10239}{2} a^{2} - 2876 a - 2955\bigr] 2 5 4 0 a 3 + 2 1 0 2 3 9 a 2 − 2 8 7 6 a − 2 9 5 5 ]
y 2 + ( 1 2 a 3 + 1 2 a 2 − a − 1 ) x y + ( 1 2 a 3 + 1 2 a 2 − a − 1 ) y = x 3 + ( − 1 2 a 3 − 1 2 a 2 + a + 1 ) x 2 + ( − 153 a 3 − 248 a 2 + 243 a + 22 ) x + 2540 a 3 + 10239 2 a 2 − 2876 a − 2955 {y}^2+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-a-1\right){x}{y}+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-a-1\right){y}={x}^{3}+\left(-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}+a+1\right){x}^{2}+\left(-153a^{3}-248a^{2}+243a+22\right){x}+2540a^{3}+\frac{10239}{2}a^{2}-2876a-2955 y 2 + ( 2 1 a 3 + 2 1 a 2 − a − 1 ) x y + ( 2 1 a 3 + 2 1 a 2 − a − 1 ) y = x 3 + ( − 2 1 a 3 − 2 1 a 2 + a + 1 ) x 2 + ( − 1 5 3 a 3 − 2 4 8 a 2 + 2 4 3 a + 2 2 ) x + 2 5 4 0 a 3 + 2 1 0 2 3 9 a 2 − 2 8 7 6 a − 2 9 5 5
31.4-a3
31.4-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.4
31 31 3 1
− 31 -31 − 3 1
5.49059 5.49059 5 . 4 9 0 5 9
( 1 / 2 a 3 − 1 / 2 a 2 − 3 a ) (1/2a^3-1/2a^2-3a) ( 1 / 2 a 3 − 1 / 2 a 2 − 3 a )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
682.5253613 682.5253613 6 8 2 . 5 2 5 3 6 1 3
1.066445877
− 11686086 31 a 3 + 31460719 62 a 2 + 43571072 31 a − 42296544 31 -\frac{11686086}{31} a^{3} + \frac{31460719}{62} a^{2} + \frac{43571072}{31} a - \frac{42296544}{31} − 3 1 1 1 6 8 6 0 8 6 a 3 + 6 2 3 1 4 6 0 7 1 9 a 2 + 3 1 4 3 5 7 1 0 7 2 a − 3 1 4 2 2 9 6 5 4 4
[ 1 \bigl[1 [ 1 , 1 2 a 2 \frac{1}{2} a^{2} 2 1 a 2 , 1 2 a 2 + a − 1 \frac{1}{2} a^{2} + a - 1 2 1 a 2 + a − 1 , − a 3 − 3 2 a 2 + a + 1 -a^{3} - \frac{3}{2} a^{2} + a + 1 − a 3 − 2 3 a 2 + a + 1 , − 5 2 a 3 − 11 2 a 2 + 2 a + 4 ] -\frac{5}{2} a^{3} - \frac{11}{2} a^{2} + 2 a + 4\bigr] − 2 5 a 3 − 2 1 1 a 2 + 2 a + 4 ]
y 2 + x y + ( 1 2 a 2 + a − 1 ) y = x 3 + 1 2 a 2 x 2 + ( − a 3 − 3 2 a 2 + a + 1 ) x − 5 2 a 3 − 11 2 a 2 + 2 a + 4 {y}^2+{x}{y}+\left(\frac{1}{2}a^{2}+a-1\right){y}={x}^{3}+\frac{1}{2}a^{2}{x}^{2}+\left(-a^{3}-\frac{3}{2}a^{2}+a+1\right){x}-\frac{5}{2}a^{3}-\frac{11}{2}a^{2}+2a+4 y 2 + x y + ( 2 1 a 2 + a − 1 ) y = x 3 + 2 1 a 2 x 2 + ( − a 3 − 2 3 a 2 + a + 1 ) x − 2 5 a 3 − 2 1 1 a 2 + 2 a + 4
31.4-a4
31.4-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.4
31 31 3 1
3 1 6 31^{6} 3 1 6
5.49059 5.49059 5 . 4 9 0 5 9
( 1 / 2 a 3 − 1 / 2 a 2 − 3 a ) (1/2a^3-1/2a^2-3a) ( 1 / 2 a 3 − 1 / 2 a 2 − 3 a )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2Cs , 3B
1 1 1
2 2 2
1 1 1
341.2626806 341.2626806 3 4 1 . 2 6 2 6 8 0 6
1.066445877
− 408946009712709 887503681 a 3 + 1814035747952571 1775007362 a 2 + 348963373631244 887503681 a − 646404289554322 887503681 -\frac{408946009712709}{887503681} a^{3} + \frac{1814035747952571}{1775007362} a^{2} + \frac{348963373631244}{887503681} a - \frac{646404289554322}{887503681} − 8 8 7 5 0 3 6 8 1 4 0 8 9 4 6 0 0 9 7 1 2 7 0 9 a 3 + 1 7 7 5 0 0 7 3 6 2 1 8 1 4 0 3 5 7 4 7 9 5 2 5 7 1 a 2 + 8 8 7 5 0 3 6 8 1 3 4 8 9 6 3 3 7 3 6 3 1 2 4 4 a − 8 8 7 5 0 3 6 8 1 6 4 6 4 0 4 2 8 9 5 5 4 3 2 2
[ 1 2 a 3 + 1 2 a 2 − a − 1 \bigl[\frac{1}{2} a^{3} + \frac{1}{2} a^{2} - a - 1 [ 2 1 a 3 + 2 1 a 2 − a − 1 , − 1 2 a 3 − 1 2 a 2 + a + 1 -\frac{1}{2} a^{3} - \frac{1}{2} a^{2} + a + 1 − 2 1 a 3 − 2 1 a 2 + a + 1 , 1 2 a 3 + 1 2 a 2 − a − 1 \frac{1}{2} a^{3} + \frac{1}{2} a^{2} - a - 1 2 1 a 3 + 2 1 a 2 − a − 1 , − 13 a 3 − 23 a 2 + 18 a + 7 -13 a^{3} - 23 a^{2} + 18 a + 7 − 1 3 a 3 − 2 3 a 2 + 1 8 a + 7 , 11 2 a 3 + 2 a 2 − 19 a + 12 ] \frac{11}{2} a^{3} + 2 a^{2} - 19 a + 12\bigr] 2 1 1 a 3 + 2 a 2 − 1 9 a + 1 2 ]
y 2 + ( 1 2 a 3 + 1 2 a 2 − a − 1 ) x y + ( 1 2 a 3 + 1 2 a 2 − a − 1 ) y = x 3 + ( − 1 2 a 3 − 1 2 a 2 + a + 1 ) x 2 + ( − 13 a 3 − 23 a 2 + 18 a + 7 ) x + 11 2 a 3 + 2 a 2 − 19 a + 12 {y}^2+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-a-1\right){x}{y}+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-a-1\right){y}={x}^{3}+\left(-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}+a+1\right){x}^{2}+\left(-13a^{3}-23a^{2}+18a+7\right){x}+\frac{11}{2}a^{3}+2a^{2}-19a+12 y 2 + ( 2 1 a 3 + 2 1 a 2 − a − 1 ) x y + ( 2 1 a 3 + 2 1 a 2 − a − 1 ) y = x 3 + ( − 2 1 a 3 − 2 1 a 2 + a + 1 ) x 2 + ( − 1 3 a 3 − 2 3 a 2 + 1 8 a + 7 ) x + 2 1 1 a 3 + 2 a 2 − 1 9 a + 1 2
31.4-a5
31.4-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.4
31 31 3 1
− 3 1 12 - 31^{12} − 3 1 1 2
5.49059 5.49059 5 . 4 9 0 5 9
( 1 / 2 a 3 − 1 / 2 a 2 − 3 a ) (1/2a^3-1/2a^2-3a) ( 1 / 2 a 3 − 1 / 2 a 2 − 3 a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
4 4 4
2 2 2
1 1 1
21.32891754 21.32891754 2 1 . 3 2 8 9 1 7 5 4
1.066445877
14383414343925670643585 1575325567577099522 a 3 + 29872156558690483602305 1575325567577099522 a 2 − 6561729841950628185729 787662783788549761 a − 8912263801297866015903 787662783788549761 \frac{14383414343925670643585}{1575325567577099522} a^{3} + \frac{29872156558690483602305}{1575325567577099522} a^{2} - \frac{6561729841950628185729}{787662783788549761} a - \frac{8912263801297866015903}{787662783788549761} 1 5 7 5 3 2 5 5 6 7 5 7 7 0 9 9 5 2 2 1 4 3 8 3 4 1 4 3 4 3 9 2 5 6 7 0 6 4 3 5 8 5 a 3 + 1 5 7 5 3 2 5 5 6 7 5 7 7 0 9 9 5 2 2 2 9 8 7 2 1 5 6 5 5 8 6 9 0 4 8 3 6 0 2 3 0 5 a 2 − 7 8 7 6 6 2 7 8 3 7 8 8 5 4 9 7 6 1 6 5 6 1 7 2 9 8 4 1 9 5 0 6 2 8 1 8 5 7 2 9 a − 7 8 7 6 6 2 7 8 3 7 8 8 5 4 9 7 6 1 8 9 1 2 2 6 3 8 0 1 2 9 7 8 6 6 0 1 5 9 0 3
[ 1 \bigl[1 [ 1 , 1 2 a 3 − 3 a − 1 \frac{1}{2} a^{3} - 3 a - 1 2 1 a 3 − 3 a − 1 , 1 2 a 3 − a + 1 \frac{1}{2} a^{3} - a + 1 2 1 a 3 − a + 1 , 69 2 a 3 − 76 a 2 − 30 a + 51 \frac{69}{2} a^{3} - 76 a^{2} - 30 a + 51 2 6 9 a 3 − 7 6 a 2 − 3 0 a + 5 1 , 903 2 a 3 − 2075 2 a 2 − 339 a + 793 ] \frac{903}{2} a^{3} - \frac{2075}{2} a^{2} - 339 a + 793\bigr] 2 9 0 3 a 3 − 2 2 0 7 5 a 2 − 3 3 9 a + 7 9 3 ]
y 2 + x y + ( 1 2 a 3 − a + 1 ) y = x 3 + ( 1 2 a 3 − 3 a − 1 ) x 2 + ( 69 2 a 3 − 76 a 2 − 30 a + 51 ) x + 903 2 a 3 − 2075 2 a 2 − 339 a + 793 {y}^2+{x}{y}+\left(\frac{1}{2}a^{3}-a+1\right){y}={x}^{3}+\left(\frac{1}{2}a^{3}-3a-1\right){x}^{2}+\left(\frac{69}{2}a^{3}-76a^{2}-30a+51\right){x}+\frac{903}{2}a^{3}-\frac{2075}{2}a^{2}-339a+793 y 2 + x y + ( 2 1 a 3 − a + 1 ) y = x 3 + ( 2 1 a 3 − 3 a − 1 ) x 2 + ( 2 6 9 a 3 − 7 6 a 2 − 3 0 a + 5 1 ) x + 2 9 0 3 a 3 − 2 2 0 7 5 a 2 − 3 3 9 a + 7 9 3
31.4-a6
31.4-a
8 8 8
12 12 1 2
Q ( 2 , 5 ) \Q(\sqrt{2}, \sqrt{5}) Q ( 2 , 5 )
4 4 4
[ 4 , 0 ] [4, 0] [ 4 , 0 ]
31.4
31 31 3 1
− 3 1 3 - 31^{3} − 3 1 3
5.49059 5.49059 5 . 4 9 0 5 9
( 1 / 2 a 3 − 1 / 2 a 2 − 3 a ) (1/2a^3-1/2a^2-3a) ( 1 / 2 a 3 − 1 / 2 a 2 − 3 a )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
682.5253613 682.5253613 6 8 2 . 5 2 5 3 6 1 3
1.066445877
− 2944222 29791 a 3 + 36603857 59582 a 2 + 1351764 29791 a − 13276467 29791 -\frac{2944222}{29791} a^{3} + \frac{36603857}{59582} a^{2} + \frac{1351764}{29791} a - \frac{13276467}{29791} − 2 9 7 9 1 2 9 4 4 2 2 2 a 3 + 5 9 5 8 2 3 6 6 0 3 8 5 7 a 2 + 2 9 7 9 1 1 3 5 1 7 6 4 a − 2 9 7 9 1 1 3 2 7 6 4 6 7
[ 1 2 a 3 + 1 2 a 2 − 2 a − 1 \bigl[\frac{1}{2} a^{3} + \frac{1}{2} a^{2} - 2 a - 1 [ 2 1 a 3 + 2 1 a 2 − 2 a − 1 , − 1 2 a 3 − 1 2 a 2 + 3 a -\frac{1}{2} a^{3} - \frac{1}{2} a^{2} + 3 a − 2 1 a 3 − 2 1 a 2 + 3 a , a + 1 a + 1 a + 1 , − 1 2 a 3 − 1 2 a 2 + a + 3 -\frac{1}{2} a^{3} - \frac{1}{2} a^{2} + a + 3 − 2 1 a 3 − 2 1 a 2 + a + 3 , − 5 2 a 3 − 5 2 a 2 + 13 a + 11 ] -\frac{5}{2} a^{3} - \frac{5}{2} a^{2} + 13 a + 11\bigr] − 2 5 a 3 − 2 5 a 2 + 1 3 a + 1 1 ]
y 2 + ( 1 2 a 3 + 1 2 a 2 − 2 a − 1 ) x y + ( a + 1 ) y = x 3 + ( − 1 2 a 3 − 1 2 a 2 + 3 a ) x 2 + ( − 1 2 a 3 − 1 2 a 2 + a + 3 ) x − 5 2 a 3 − 5 2 a 2 + 13 a + 11 {y}^2+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-2a-1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}+3a\right){x}^{2}+\left(-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}+a+3\right){x}-\frac{5}{2}a^{3}-\frac{5}{2}a^{2}+13a+11 y 2 + ( 2 1 a 3 + 2 1 a 2 − 2 a − 1 ) x y + ( a + 1 ) y = x 3 + ( − 2 1 a 3 − 2 1 a 2 + 3 a ) x 2 + ( − 2 1 a 3 − 2 1 a 2 + a + 3 ) x − 2 5 a 3 − 2 5 a 2 + 1 3 a + 1 1