Properties

Label 4.4.14272.1-9.1-b4
Base field 4.4.14272.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.14272.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 5 x^{2} + 2 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, 2, -5, -2, 1]))
 
gp: K = nfinit(Polrev([3, 2, -5, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, 2, -5, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{3}-5a^{2}-5a+5\right){x}{y}+\left(2a^{3}-5a^{2}-6a+5\right){y}={x}^{3}+\left(2a^{3}-5a^{2}-6a+5\right){x}^{2}+\left(68a^{3}-230a^{2}-13a+145\right){x}+568a^{3}-1968a^{2}+37a+1132\)
sage: E = EllipticCurve([K([5,-5,-5,2]),K([5,-6,-5,2]),K([5,-6,-5,2]),K([145,-13,-230,68]),K([1132,37,-1968,568])])
 
gp: E = ellinit([Polrev([5,-5,-5,2]),Polrev([5,-6,-5,2]),Polrev([5,-6,-5,2]),Polrev([145,-13,-230,68]),Polrev([1132,37,-1968,568])], K);
 
magma: E := EllipticCurve([K![5,-5,-5,2],K![5,-6,-5,2],K![5,-6,-5,2],K![145,-13,-230,68],K![1132,37,-1968,568]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-2a-3)\) = \((-a)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(3^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-2a^3+7a^2+4a-12)\) = \((-a)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 729 \) = \(3^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -74976000 a^{3} + 87518656 a^{2} + 436386432 a + 243770624 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{9011}{729} a^{3} - \frac{51269}{1458} a^{2} - \frac{23764}{729} a + \frac{35623}{729} : -\frac{2188504}{19683} a^{3} + \frac{23606897}{78732} a^{2} + \frac{27604583}{78732} a - \frac{37148987}{78732} : 1\right)$
Height \(2.3836941905054172637479801010189183469\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(2 a^{3} - 7 a^{2} - a + \frac{11}{2} : \frac{3}{2} a^{3} - \frac{25}{4} a^{2} + \frac{25}{4} a + \frac{1}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 2.3836941905054172637479801010189183469 \)
Period: \( 85.715109933751011930852567450826509090 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 3.42054652294683 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(3\) \(2\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 9.1-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.