Properties

Label 4.4.12357.1-16.1-b3
Base field 4.4.12357.1
Conductor norm \( 16 \)
CM no
Base change no
Q-curve no
Torsion order \( 3 \)
Rank not available

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.12357.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 5 x^{2} + 3 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, 3, -5, -1, 1]))
 
gp: K = nfinit(Polrev([3, 3, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, 3, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-a^{2}-3a+3\right){x}{y}+a{y}={x}^{3}+\left(a^{3}-2a^{2}-3a+4\right){x}^{2}+\left(-a^{3}+a^{2}+3a-3\right){x}-a^{2}+1\)
sage: E = EllipticCurve([K([3,-3,-1,1]),K([4,-3,-2,1]),K([0,1,0,0]),K([-3,3,1,-1]),K([1,0,-1,0])])
 
gp: E = ellinit([Polrev([3,-3,-1,1]),Polrev([4,-3,-2,1]),Polrev([0,1,0,0]),Polrev([-3,3,1,-1]),Polrev([1,0,-1,0])], K);
 
magma: E := EllipticCurve([K![3,-3,-1,1],K![4,-3,-2,1],K![0,1,0,0],K![-3,3,1,-1],K![1,0,-1,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2)\) = \((2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(16\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-8)\) = \((2)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 4096 \) = \(16^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{3615673}{2} a^{3} + \frac{22615701}{8} a^{2} + \frac{14891109}{2} a - 9620794 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0 \le r \le 1\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{1}{3} a^{2} : -\frac{2}{9} a^{3} + \frac{4}{9} a^{2} - \frac{2}{3} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0 \le r \le 1\)
Regulator: not available
Period: \( 475.92272586914328358588432837355387542 \)
Tamagawa product: \( 3 \)
Torsion order: \(3\)
Leading coefficient: \( 1.51861798160212 \)
Analytic order of Ш: not available

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2)\) \(16\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3Cs.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 16.1-b consists of curves linked by isogenies of degrees dividing 9.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.