Properties

Label 4.4.11525.1-11.1-c2
Base field 4.4.11525.1
Conductor norm \( 11 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field 4.4.11525.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 11 x^{2} + 5 x + 25 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([25, 5, -11, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([25, 5, -11, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![25, 5, -11, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(a^{2}-a-5\right){y}={x}^{3}+\left(a^{2}-a-7\right){x}^{2}+\left(-\frac{761}{5}a^{3}-\frac{1469}{5}a^{2}+\frac{3836}{5}a+1340\right){x}-\frac{16893}{5}a^{3}-\frac{35292}{5}a^{2}+\frac{74938}{5}a+27840\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([0,1,0,0]),K([-7,-1,1,0]),K([-5,-1,1,0]),K([1340,3836/5,-1469/5,-761/5]),K([27840,74938/5,-35292/5,-16893/5])])
 
Copy content gp:E = ellinit([Polrev([0,1,0,0]),Polrev([-7,-1,1,0]),Polrev([-5,-1,1,0]),Polrev([1340,3836/5,-1469/5,-761/5]),Polrev([27840,74938/5,-35292/5,-16893/5])], K);
 
Copy content magma:E := EllipticCurve([K![0,1,0,0],K![-7,-1,1,0],K![-5,-1,1,0],K![1340,3836/5,-1469/5,-761/5],K![27840,74938/5,-35292/5,-16893/5]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

Not computed ($ 0 \le r \le 1 $)

Invariants

Conductor: $\frak{N}$ = \((-1/5a^3-4/5a^2+6/5a+4)\) = \((-1/5a^3-4/5a^2+6/5a+4)\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 11 \) = \(11\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-1/5a^3-4/5a^2+6/5a+4$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-1/5a^3-4/5a^2+6/5a+4)\) = \((-1/5a^3-4/5a^2+6/5a+4)\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 11 \) = \(11\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( -\frac{97445251312609023426791}{11} a^{3} + \frac{250327500830266243970126}{11} a^{2} + \frac{679157934354108520318016}{11} a - \frac{1552759890918669626778665}{11} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r?$   \(0 \le r \le 1\)
Regulator: $\mathrm{Reg}(E/K)$ not available
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ not available
Global period: $\Omega(E/K)$ \( 1.9036052709669598418907280099224628745 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 1 \)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(1\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 2.63866421443728 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= not available

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is semistable. There is only one prime $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-1/5a^3-4/5a^2+6/5a+4)\) \(11\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 11.1-c consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.