Properties

Label 4.4.10273.1-9.1-a3
Base field 4.4.10273.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.10273.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 5 x^{2} + x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 1, -5, -2, 1]))
 
gp: K = nfinit(Polrev([2, 1, -5, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 1, -5, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{3}-5a^{2}-5a+3\right){x}{y}={x}^{3}+\left(-a^{3}+2a^{2}+4a\right){x}^{2}+\left(-2a^{3}+7a^{2}+2a-1\right){x}-a^{3}+5a^{2}-3a-4\)
sage: E = EllipticCurve([K([3,-5,-5,2]),K([0,4,2,-1]),K([0,0,0,0]),K([-1,2,7,-2]),K([-4,-3,5,-1])])
 
gp: E = ellinit([Polrev([3,-5,-5,2]),Polrev([0,4,2,-1]),Polrev([0,0,0,0]),Polrev([-1,2,7,-2]),Polrev([-4,-3,5,-1])], K);
 
magma: E := EllipticCurve([K![3,-5,-5,2],K![0,4,2,-1],K![0,0,0,0],K![-1,2,7,-2],K![-4,-3,5,-1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-3a^2-2a+1)\) = \((-a^2+1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(3^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-3a^2+17a+7)\) = \((-a^2+1)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -59049 \) = \(-3^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{490913}{81} a^{3} + \frac{614549}{81} a^{2} + \frac{986851}{27} a + \frac{1612993}{81} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0 \le r \le 1\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{3}{4} a^{3} - 2 a^{2} - \frac{7}{4} a - \frac{3}{4} : \frac{17}{8} a^{3} - 6 a^{2} - \frac{29}{8} a + \frac{15}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0 \le r \le 1\)
Regulator: not available
Period: \( 312.17063105626857762091105165223543729 \)
Tamagawa product: \( 4 \)
Torsion order: \(2\)
Leading coefficient: \( 1.65795269623640 \)
Analytic order of Ш: not available

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^2+1)\) \(3\) \(4\) \(I_{4}^{*}\) Additive \(-1\) \(2\) \(10\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 9.1-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.