Properties

Label 3.3.940.1-5.2-a1
Base field 3.3.940.1
Conductor norm \( 5 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.940.1

Generator \(a\), with minimal polynomial \( x^{3} - 7 x - 4 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-4, -7, 0, 1]))
 
gp: K = nfinit(Polrev([-4, -7, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-4, -7, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-5\right){x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(106a^{2}-63a-702\right){x}+1165a^{2}-702a-7734\)
sage: E = EllipticCurve([K([-5,-1,1]),K([-1,-1,0]),K([1,0,0]),K([-702,-63,106]),K([-7734,-702,1165])])
 
gp: E = ellinit([Polrev([-5,-1,1]),Polrev([-1,-1,0]),Polrev([1,0,0]),Polrev([-702,-63,106]),Polrev([-7734,-702,1165])], K);
 
magma: E := EllipticCurve([K![-5,-1,1],K![-1,-1,0],K![1,0,0],K![-702,-63,106],K![-7734,-702,1165]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^2+a+5)\) = \((-a^2+a+5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 5 \) = \(5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^2-a-5)\) = \((-a^2+a+5)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 5 \) = \(5\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{199332986876}{5} a^{2} + \frac{120136663044}{5} a + \frac{1322930343681}{5} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{5}{2} a^{2} - a - \frac{69}{4} : \frac{45}{8} a^{2} - \frac{31}{8} a - \frac{293}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 20.507175633761695262514857749661767125 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 0.66887031824701344777754599282365226254 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^2+a+5)\) \(5\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 5.2-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.