Properties

Label 3.3.733.1-2.1-b1
Base field 3.3.733.1
Conductor norm \( 2 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.733.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 7 x + 8 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([8, -7, -1, 1]))
 
gp: K = nfinit(Polrev([8, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![8, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-5\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(18957864a^{2}+3380608a-128731016\right){x}+72417315372a^{2}+12904890246a-491718787736\)
sage: E = EllipticCurve([K([-5,0,1]),K([0,0,0]),K([1,1,0]),K([-128731016,3380608,18957864]),K([-491718787736,12904890246,72417315372])])
 
gp: E = ellinit([Polrev([-5,0,1]),Polrev([0,0,0]),Polrev([1,1,0]),Polrev([-128731016,3380608,18957864]),Polrev([-491718787736,12904890246,72417315372])], K);
 
magma: E := EllipticCurve([K![-5,0,1],K![0,0,0],K![1,1,0],K![-128731016,3380608,18957864],K![-491718787736,12904890246,72417315372]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-6)\) = \((a^2-6)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 2 \) = \(2\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^2+16a+64)\) = \((a^2-6)^{18}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -262144 \) = \(-2^{18}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1308241604941929}{262144} a^{2} - \frac{233087636858447}{262144} a + \frac{8883119257726807}{262144} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{172251}{25} a^{2} - \frac{32982}{25} a + \frac{1175351}{25} : \frac{155165794}{125} a^{2} + \frac{27422908}{125} a - \frac{1053013219}{125} : 1\right)$
Height \(1.6512868987226162541344758122566922855\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{4447}{4} a^{2} + \frac{661}{4} a - \frac{29865}{4} : \frac{15863}{8} a^{2} + \frac{3121}{8} a - \frac{108465}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.6512868987226162541344758122566922855 \)
Period: \( 9.3293269566393914904633731243606414525 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 0.85351689191865735834263246428729022860 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-6)\) \(2\) \(2\) \(I_{18}\) Non-split multiplicative \(1\) \(1\) \(18\) \(18\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 2.1-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.