Properties

Label 3.3.564.1-12.1-b3
Base field 3.3.564.1
Conductor norm \( 12 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.564.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 5 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -5, -1, 1]))
 
gp: K = nfinit(Polrev([3, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-3\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(2520a^{2}-1393a-13872\right){x}+198755a^{2}-90108a-1052947\)
sage: E = EllipticCurve([K([-3,0,1]),K([1,1,0]),K([1,1,0]),K([-13872,-1393,2520]),K([-1052947,-90108,198755])])
 
gp: E = ellinit([Polrev([-3,0,1]),Polrev([1,1,0]),Polrev([1,1,0]),Polrev([-13872,-1393,2520]),Polrev([-1052947,-90108,198755])], K);
 
magma: E := EllipticCurve([K![-3,0,1],K![1,1,0],K![1,1,0],K![-13872,-1393,2520],K![-1052947,-90108,198755]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-3)\) = \((a-1)^{2}\cdot(a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 12 \) = \(2^{2}\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a+6)\) = \((a-1)^{4}\cdot(a)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 144 \) = \(2^{4}\cdot3^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{19264}{9} a^{2} + \frac{20864}{9} a - \frac{27584}{9} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-29 a^{2} + 30 a + 189 : -526 a^{2} + 52 a + 2398 : 1\right)$
Height \(0.36559105419793891274743587176575702158\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-30 a^{2} + \frac{17}{2} a + \frac{297}{2} : -\frac{67}{2} a^{2} + 21 a + 190 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.36559105419793891274743587176575702158 \)
Period: \( 70.095989211965954195460716448638924829 \)
Tamagawa product: \( 2 \)  =  \(1\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 1.6186033552349784944335534439932381598 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a-1)\) \(2\) \(1\) \(IV\) Additive \(-1\) \(2\) \(4\) \(0\)
\((a)\) \(3\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 12.1-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.