Properties

Label 3.3.321.1-27.1-c1
Base field 3.3.321.1
Conductor norm \( 27 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.321.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 4 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -4, -1, 1]))
 
gp: K = nfinit(Polrev([1, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-3\right){x}{y}+\left(a^{2}-2\right){y}={x}^{3}+\left(a^{2}-a-4\right){x}^{2}+\left(-141a^{2}+401a-138\right){x}+1980a^{2}-5420a+1345\)
sage: E = EllipticCurve([K([-3,0,1]),K([-4,-1,1]),K([-2,0,1]),K([-138,401,-141]),K([1345,-5420,1980])])
 
gp: E = ellinit([Polrev([-3,0,1]),Polrev([-4,-1,1]),Polrev([-2,0,1]),Polrev([-138,401,-141]),Polrev([1345,-5420,1980])], K);
 
magma: E := EllipticCurve([K![-3,0,1],K![-4,-1,1],K![-2,0,1],K![-138,401,-141],K![1345,-5420,1980]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((3)\) = \((a+1)\cdot(-a^2+a+3)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 27 \) = \(3\cdot3^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((12a^2-9a-12)\) = \((a+1)^{6}\cdot(-a^2+a+3)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 19683 \) = \(3^{6}\cdot3^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{118553573237}{729} a^{2} + \frac{90107483119}{729} a + \frac{496039265614}{729} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(8 a^{2} - 24 a + 10 : -73 a^{2} + 193 a - 34 : 1\right)$
Height \(0.033576913538970344063843219742844100414\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{5}{4} a^{2} - \frac{23}{4} a + 6 : -\frac{15}{8} a^{2} + a + \frac{31}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.033576913538970344063843219742844100414 \)
Period: \( 249.68335411886256388373753027586477969 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 1.4037801617859234154821356535936773634 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+1)\) \(3\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)
\((-a^2+a+3)\) \(3\) \(2\) \(III\) Additive \(1\) \(2\) \(3\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 27.1-c consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.