Properties

Label 3.3.321.1-24.1-b1
Base field 3.3.321.1
Conductor norm \( 24 \)
CM no
Base change no
Q-curve no
Torsion order \( 3 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.321.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 4 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -4, -1, 1]))
 
gp: K = nfinit(Polrev([1, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-3\right){x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-319a^{2}-476a+133\right){x}-18887a^{2}-27538a+7665\)
sage: E = EllipticCurve([K([-3,-1,1]),K([-1,-1,0]),K([0,1,0]),K([133,-476,-319]),K([7665,-27538,-18887])])
 
gp: E = ellinit([Polrev([-3,-1,1]),Polrev([-1,-1,0]),Polrev([0,1,0]),Polrev([133,-476,-319]),Polrev([7665,-27538,-18887])], K);
 
magma: E := EllipticCurve([K![-3,-1,1],K![-1,-1,0],K![0,1,0],K![133,-476,-319],K![7665,-27538,-18887]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a+2)\) = \((a+1)\cdot(2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 24 \) = \(3\cdot8\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-8a^2-8a+24)\) = \((a+1)^{3}\cdot(2)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -13824 \) = \(-3^{3}\cdot8^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1507}{216} a^{2} - \frac{19555}{216} a + \frac{604}{27} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(13 a^{2} + 16 a - 5 : 100 a^{2} + 140 a - 40 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 49.513569787168438435301893960994297385 \)
Tamagawa product: \( 3 \)  =  \(3\cdot1\)
Torsion order: \(3\)
Leading coefficient: \( 0.92119265799426582014027378805884963774 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+1)\) \(3\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)
\((2)\) \(8\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3Cs.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 24.1-b consists of curves linked by isogenies of degrees dividing 9.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.