Properties

Label 3.1.23.1-11449.2-A2
Base field 3.1.23.1
Conductor norm \( 11449 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field 3.1.23.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} + 1 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([1, 0, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -1, 1]);
 

Weierstrass equation

\({y}^2+a{y}={x}^{3}+\left(a^{2}-a\right){x}^{2}+\left(742a^{2}-186a-552\right){x}+8443a^{2}+1063a-3975\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([0,0,0]),K([0,-1,1]),K([0,1,0]),K([-552,-186,742]),K([-3975,1063,8443])])
 
Copy content gp:E = ellinit([Polrev([0,0,0]),Polrev([0,-1,1]),Polrev([0,1,0]),Polrev([-552,-186,742]),Polrev([-3975,1063,8443])], K);
 
Copy content magma:E := EllipticCurve([K![0,0,0],K![0,-1,1],K![0,1,0],K![-552,-186,742],K![-3975,1063,8443]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-2 a^{2} + 17 a + 12 : 80 a^{2} + 101 a + 28 : 1\right)$$0.35499036664990072486963760319379845456$$\infty$

Invariants

Conductor: $\frak{N}$ = \((21a^2-5a+4)\) = \((5a^2-3a)^{2}\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 11449 \) = \(107^{2}\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(K, ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-1362867a^2+1067651a+1139995$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-1362867a^2+1067651a+1139995)\) = \((5a^2-3a)^{9}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( -1838459212420154507 \) = \(-107^{9}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( -\frac{13431610740736}{1225043} a^{2} - \frac{34043228901376}{1225043} a - \frac{18044231077888}{1225043} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 0.35499036664990072486963760319379845456 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 1.06497109994970217460891280958139536368 \)
Global period: $\Omega(E/K)$ \( 2.1486531487778387260574659004701639900 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 4 \)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(1\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.9085353571250688051396063502660649347 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}1.908535357 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 2.148653 \cdot 1.064971 \cdot 4 } { {1^2 \cdot 4.795832} } \\ & \approx 1.908535357 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There is only one prime $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((5a^2-3a)\) \(107\) \(4\) \(I_{3}^{*}\) Additive \(-1\) \(2\) \(9\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3 and 9.
Its isogeny class 11449.2-A consists of curves linked by isogenies of degrees dividing 9.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.