Base field \(\Q(\sqrt{22}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 22 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{5}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(a + 5 : -3 a - 15 : 1\right)$ | $1.0704459240017931470415173992062485690$ | $\infty$ |
$\left(0 : -1 : 1\right)$ | $0$ | $5$ |
Invariants
Conductor: | $\frak{N}$ | = | \((7a-33)\) | = | \((7a-33)\) |
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 11 \) | = | \(11\) |
| |||||
Discriminant: | $\Delta$ | = | $-11$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-11)\) | = | \((7a-33)^{2}\) |
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 121 \) | = | \(11^{2}\) |
| |||||
j-invariant: | $j$ | = | \( -\frac{4096}{11} \) | ||
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|||
Mordell-Weil rank: | $r$ | = | \(1\) |
Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 1.0704459240017931470415173992062485690 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 2.1408918480035862940830347984124971380 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 40.272306451744700590576428895947111815 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 2 \) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(5\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 0.73527513975510059841252397179932003617 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}0.735275140 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 40.272306 \cdot 2.140892 \cdot 2 } { {5^2 \cdot 9.380832} } \\ & \approx 0.735275140 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is semistable. There is only one prime $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((7a-33)\) | \(11\) | \(2\) | \(I_{2}\) | Split multiplicative | \(-1\) | \(1\) | \(2\) | \(2\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(5\) | 5B.1.1 |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
5 and 25.
Its isogeny class
11.1-b
consists of curves linked by isogenies of
degrees dividing 25.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
Base field | Curve |
---|---|
\(\Q\) | 11.a3 |
\(\Q\) | 7744.k3 |