Base field \(\Q(\sqrt{85}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 21 \); class number \(2\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{4}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(-\frac{25}{36} a + \frac{73}{36} : \frac{125}{108} a - \frac{1657}{216} : 1\right)$ | $2.2728583050142632756555446658871961429$ | $\infty$ |
$\left(-1 : 0 : 1\right)$ | $0$ | $2$ |
$\left(-2 : -2 : 1\right)$ | $0$ | $4$ |
Invariants
Conductor: | $\frak{N}$ | = | \((15,3a+6)\) | = | \((3,a)\cdot(3,a+2)\cdot(5,a+2)\) |
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 45 \) | = | \(3\cdot3\cdot5\) |
| |||||
Discriminant: | $\Delta$ | = | $50625$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((50625)\) | = | \((3,a)^{4}\cdot(3,a+2)^{4}\cdot(5,a+2)^{8}\) |
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 2562890625 \) | = | \(3^{4}\cdot3^{4}\cdot5^{8}\) |
| |||||
j-invariant: | $j$ | = | \( \frac{111284641}{50625} \) | ||
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|||
Mordell-Weil rank: | $r$ | = | \(1\) |
Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 2.2728583050142632756555446658871961429 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 4.5457166100285265513110893317743922858 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 7.8467555287653622999746227764605778250 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 32 \) = \(2\cdot2\cdot2^{3}\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(8\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 1.9344300093768039124176030705033736856 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}1.934430009 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 7.846756 \cdot 4.545717 \cdot 32 } { {8^2 \cdot 9.219544} } \\ & \approx 1.934430009 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is semistable. There are 3 primes $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((3,a)\) | \(3\) | \(2\) | \(I_{4}\) | Non-split multiplicative | \(1\) | \(1\) | \(4\) | \(4\) |
\((3,a+2)\) | \(3\) | \(2\) | \(I_{4}\) | Non-split multiplicative | \(1\) | \(1\) | \(4\) | \(4\) |
\((5,a+2)\) | \(5\) | \(8\) | \(I_{8}\) | Split multiplicative | \(-1\) | \(1\) | \(8\) | \(8\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2Cs |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2 and 4.
Its isogeny class
45.1-c
consists of curves linked by isogenies of
degrees dividing 16.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
Base field | Curve |
---|---|
\(\Q\) | 15.a5 |
\(\Q\) | 21675.s5 |