Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
3362.1-a1 3362.1-a \(\Q(\sqrt{2}) \) \( 2 \cdot 41^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.187804837$ $2.615921646$ 4.168672289 \( \frac{14356103997325}{19000416964} a + \frac{41326572582217}{19000416964} \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( -45 a - 27\) , \( 88 a + 61\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-45a-27\right){x}+88a+61$
3362.1-a2 3362.1-a \(\Q(\sqrt{2}) \) \( 2 \cdot 41^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.093902418$ $10.46368658$ 4.168672289 \( \frac{1135868161485}{551368} a + \frac{3215614924651}{1102736} \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( -25 a - 47\) , \( 92 a + 121\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-25a-47\right){x}+92a+121$
3362.1-b1 3362.1-b \(\Q(\sqrt{2}) \) \( 2 \cdot 41^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.187804837$ $2.615921646$ 4.168672289 \( -\frac{14356103997325}{19000416964} a + \frac{41326572582217}{19000416964} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( 45 a - 27\) , \( -88 a + 61\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(45a-27\right){x}-88a+61$
3362.1-b2 3362.1-b \(\Q(\sqrt{2}) \) \( 2 \cdot 41^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.093902418$ $10.46368658$ 4.168672289 \( -\frac{1135868161485}{551368} a + \frac{3215614924651}{1102736} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( 25 a - 47\) , \( -92 a + 121\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(25a-47\right){x}-92a+121$
3362.1-c1 3362.1-c \(\Q(\sqrt{2}) \) \( 2 \cdot 41^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.120199585$ $1.682854345$ 2.522947863 \( -\frac{4906399929094573}{5651522} a + \frac{3469348661100520}{2825761} \) \( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( 6 a + 3\) , \( -3071 a - 4348\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(6a+3\right){x}-3071a-4348$
3362.1-c2 3362.1-c \(\Q(\sqrt{2}) \) \( 2 \cdot 41^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.132512474$ $26.92566952$ 2.522947863 \( \frac{389017}{164} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -2\) , \( 0\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-2{x}$
3362.1-c3 3362.1-c \(\Q(\sqrt{2}) \) \( 2 \cdot 41^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.530049896$ $6.731417382$ 2.522947863 \( \frac{169112377}{3362} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -12\) , \( -16\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-12{x}-16$
3362.1-c4 3362.1-c \(\Q(\sqrt{2}) \) \( 2 \cdot 41^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.120199585$ $1.682854345$ 2.522947863 \( \frac{4906399929094573}{5651522} a + \frac{3469348661100520}{2825761} \) \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( -8 a + 3\) , \( 3070 a - 4348\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-8a+3\right){x}+3070a-4348$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.