Base field \(\Q(\sqrt{57}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 14 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(-a + 4 : 14 a - 62 : 1\right)$ | $0.16724666685362019393764909685498293007$ | $\infty$ |
Invariants
Conductor: | $\frak{N}$ | = | \((7a-26)\) | = | \((a-4)^{6}\cdot(4a+13)\) |
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 192 \) | = | \(2^{6}\cdot3\) |
| |||||
Discriminant: | $\Delta$ | = | $-15a-54$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-15a-54)\) | = | \((a-4)^{6}\cdot(4a+13)^{2}\) |
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 576 \) | = | \(2^{6}\cdot3^{2}\) |
| |||||
j-invariant: | $j$ | = | \( -\frac{512}{3} a + 512 \) | ||
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|||
Mordell-Weil rank: | $r$ | = | \(1\) |
Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 0.16724666685362019393764909685498293007 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 0.334493333707240387875298193709965860140 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 25.841690087257866030702699547613129175 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 2 \) = \(1\cdot2\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(1\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 2.2898179132338145389740938222993258979 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}2.289817913 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 25.841690 \cdot 0.334493 \cdot 2 } { {1^2 \cdot 7.549834} } \\ & \approx 2.289817913 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((a-4)\) | \(2\) | \(1\) | \(II\) | Additive | \(1\) | \(6\) | \(6\) | \(0\) |
\((4a+13)\) | \(3\) | \(2\) | \(I_{2}\) | Split multiplicative | \(-1\) | \(1\) | \(2\) | \(2\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .
Isogenies and isogeny class
This curve has no rational isogenies. Its isogeny class 192.7-e consists of this curve only.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.