Learn more

Refine search


Results (16 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1620.1-a1 1620.1-a \(\Q(\sqrt{5}) \) \( 2^{2} \cdot 3^{4} \cdot 5 \) $1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $0.198498654$ $15.76958961$ 1.866515897 \( -\frac{1860867}{320} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -8\) , \( 11\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-8{x}+11$
1620.1-a2 1620.1-a \(\Q(\sqrt{5}) \) \( 2^{2} \cdot 3^{4} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.595495963$ $1.752176623$ 1.866515897 \( \frac{804357}{500} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( 52\) , \( -53\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+52{x}-53$
1620.1-a3 1620.1-a \(\Q(\sqrt{5}) \) \( 2^{2} \cdot 3^{4} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.190991927$ $1.752176623$ 1.866515897 \( \frac{57960603}{31250} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -218\) , \( -269\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-218{x}-269$
1620.1-a4 1620.1-a \(\Q(\sqrt{5}) \) \( 2^{2} \cdot 3^{4} \cdot 5 \) $1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $0.396997309$ $15.76958961$ 1.866515897 \( \frac{8527173507}{200} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -128\) , \( 587\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-128{x}+587$
1620.1-b1 1620.1-b \(\Q(\sqrt{5}) \) \( 2^{2} \cdot 3^{4} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.672364670$ 1.804143729 \( -\frac{1860867}{320} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -69\) , \( -235\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-69{x}-235$
1620.1-b2 1620.1-b \(\Q(\sqrt{5}) \) \( 2^{2} \cdot 3^{4} \cdot 5 \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $6.051282030$ 1.804143729 \( \frac{804357}{500} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 6\) , \( 0\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+6{x}$
1620.1-b3 1620.1-b \(\Q(\sqrt{5}) \) \( 2^{2} \cdot 3^{4} \cdot 5 \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $6.051282030$ 1.804143729 \( \frac{57960603}{31250} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -24\) , \( 18\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-24{x}+18$
1620.1-b4 1620.1-b \(\Q(\sqrt{5}) \) \( 2^{2} \cdot 3^{4} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.672364670$ 1.804143729 \( \frac{8527173507}{200} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -1149\) , \( -14707\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-1149{x}-14707$
1620.1-c1 1620.1-c \(\Q(\sqrt{5}) \) \( 2^{2} \cdot 3^{4} \cdot 5 \) 0 $\Z/12\Z$ $\mathrm{SU}(2)$ $1$ $1.789163044$ 1.600276076 \( -\frac{273359449}{1536000} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -122\) , \( 1721\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-122{x}+1721$
1620.1-c2 1620.1-c \(\Q(\sqrt{5}) \) \( 2^{2} \cdot 3^{4} \cdot 5 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.789163044$ 1.600276076 \( \frac{357911}{2160} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( 13\) , \( -61\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+13{x}-61$
1620.1-c3 1620.1-c \(\Q(\sqrt{5}) \) \( 2^{2} \cdot 3^{4} \cdot 5 \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $0.447290761$ 1.600276076 \( \frac{10316097499609}{5859375000} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -4082\) , \( 14681\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-4082{x}+14681$
1620.1-c4 1620.1-c \(\Q(\sqrt{5}) \) \( 2^{2} \cdot 3^{4} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.789163044$ 1.600276076 \( \frac{35578826569}{5314410} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -617\) , \( 5231\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-617{x}+5231$
1620.1-c5 1620.1-c \(\Q(\sqrt{5}) \) \( 2^{2} \cdot 3^{4} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.789163044$ 1.600276076 \( \frac{702595369}{72900} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -167\) , \( -709\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-167{x}-709$
1620.1-c6 1620.1-c \(\Q(\sqrt{5}) \) \( 2^{2} \cdot 3^{4} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $1.789163044$ 1.600276076 \( \frac{4102915888729}{9000000} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -3002\) , \( 63929\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-3002{x}+63929$
1620.1-c7 1620.1-c \(\Q(\sqrt{5}) \) \( 2^{2} \cdot 3^{4} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.447290761$ 1.600276076 \( \frac{2656166199049}{33750} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -2597\) , \( -50281\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-2597{x}-50281$
1620.1-c8 1620.1-c \(\Q(\sqrt{5}) \) \( 2^{2} \cdot 3^{4} \cdot 5 \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $1.789163044$ 1.600276076 \( \frac{16778985534208729}{81000} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -48002\) , \( 4059929\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-48002{x}+4059929$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.