Base field \(\Q(\sqrt{5}) \)
Generator \(\phi\), with minimal polynomial \( x^{2} - x - 1 \); class number \(1\).
Rank
Rank: \( 0 \)Isogeny matrix
\(\left(\begin{array}{rrrr} 1 & 15 & 3 & 5 \\ 15 & 1 & 5 & 3 \\ 3 & 5 & 1 & 15 \\ 5 & 3 & 15 & 1 \end{array}\right)\)
Isogeny graph
Elliptic curves in class 100.1-a over \(\Q(\sqrt{5}) \)
Isogeny class 100.1-a contains 4 curves linked by isogenies of degrees dividing 15.