Learn more

Refine search


Results (16 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
324.1-a1 324.1-a \(\Q(\sqrt{11}) \) \( 2^{2} \cdot 3^{4} \) $1$ $\Z/2\Z$ $-3$ $N(\mathrm{U}(1))$ $5.559532991$ $5.898343969$ 4.943585718 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -1\bigr] \) ${y}^2={x}^{3}-1$
324.1-a2 324.1-a \(\Q(\sqrt{11}) \) \( 2^{2} \cdot 3^{4} \) $1$ $\Z/2\Z$ $-3$ $N(\mathrm{U}(1))$ $1.853177663$ $5.898343969$ 4.943585718 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 27\bigr] \) ${y}^2={x}^{3}+27$
324.1-a3 324.1-a \(\Q(\sqrt{11}) \) \( 2^{2} \cdot 3^{4} \) $1$ $\Z/2\Z$ $-12$ $N(\mathrm{U}(1))$ $2.779766495$ $11.79668793$ 4.943585718 \( 54000 \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( -222 a - 735\) , \( -3887 a - 12892\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-222a-735\right){x}-3887a-12892$
324.1-a4 324.1-a \(\Q(\sqrt{11}) \) \( 2^{2} \cdot 3^{4} \) $1$ $\Z/2\Z$ $-12$ $N(\mathrm{U}(1))$ $0.926588831$ $11.79668793$ 4.943585718 \( 54000 \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 2027 a - 6711\) , \( -90208 a + 299200\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(2027a-6711\right){x}-90208a+299200$
324.1-b1 324.1-b \(\Q(\sqrt{11}) \) \( 2^{2} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.747009330$ $16.40727385$ 3.695439622 \( -9344 a + \frac{115792}{3} \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( -7 a - 27\) , \( 2 a + 8\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-7a-27\right){x}+2a+8$
324.1-b2 324.1-b \(\Q(\sqrt{11}) \) \( 2^{2} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.494018661$ $8.203636928$ 3.695439622 \( \frac{21118868}{3} a + \frac{210149176}{9} \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( -142 a - 477\) , \( 1343 a + 4454\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-142a-477\right){x}+1343a+4454$
324.1-c1 324.1-c \(\Q(\sqrt{11}) \) \( 2^{2} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.494018661$ $8.203636928$ 3.695439622 \( -\frac{21118868}{3} a + \frac{210149176}{9} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( 147 a - 471\) , \( -1820 a + 6041\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(147a-471\right){x}-1820a+6041$
324.1-c2 324.1-c \(\Q(\sqrt{11}) \) \( 2^{2} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.747009330$ $16.40727385$ 3.695439622 \( 9344 a + \frac{115792}{3} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( 12 a - 21\) , \( -29 a + 110\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(12a-21\right){x}-29a+110$
324.1-d1 324.1-d \(\Q(\sqrt{11}) \) \( 2^{2} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.329787359$ $6.585481807$ 1.964474842 \( -9344 a + \frac{115792}{3} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( -6 a - 21\) , \( -47 a - 156\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-6a-21\right){x}-47a-156$
324.1-d2 324.1-d \(\Q(\sqrt{11}) \) \( 2^{2} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.659574718$ $3.292740903$ 1.964474842 \( \frac{21118868}{3} a + \frac{210149176}{9} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( -141 a - 471\) , \( -2108 a - 6987\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-141a-471\right){x}-2108a-6987$
324.1-e1 324.1-e \(\Q(\sqrt{11}) \) \( 2^{2} \cdot 3^{4} \) $1$ $\Z/6\Z$ $-3$ $N(\mathrm{U}(1))$ $3.247247529$ $17.69503190$ 2.887481112 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 1\bigr] \) ${y}^2={x}^{3}+1$
324.1-e2 324.1-e \(\Q(\sqrt{11}) \) \( 2^{2} \cdot 3^{4} \) $1$ $\Z/2\Z$ $-3$ $N(\mathrm{U}(1))$ $9.741742587$ $1.966114656$ 2.887481112 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -27\bigr] \) ${y}^2={x}^{3}-27$
324.1-e3 324.1-e \(\Q(\sqrt{11}) \) \( 2^{2} \cdot 3^{4} \) $1$ $\Z/6\Z$ $-12$ $N(\mathrm{U}(1))$ $1.623623764$ $35.39006381$ 2.887481112 \( 54000 \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( -223 a - 741\) , \( 2696 a + 8940\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-223a-741\right){x}+2696a+8940$
324.1-e4 324.1-e \(\Q(\sqrt{11}) \) \( 2^{2} \cdot 3^{4} \) $1$ $\Z/2\Z$ $-12$ $N(\mathrm{U}(1))$ $4.870871293$ $3.932229312$ 2.887481112 \( 54000 \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( 2028 a - 6705\) , \( 87547 a - 290342\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(2028a-6705\right){x}+87547a-290342$
324.1-f1 324.1-f \(\Q(\sqrt{11}) \) \( 2^{2} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.659574718$ $3.292740903$ 1.964474842 \( -\frac{21118868}{3} a + \frac{210149176}{9} \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 146 a - 477\) , \( 1631 a - 5406\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(146a-477\right){x}+1631a-5406$
324.1-f2 324.1-f \(\Q(\sqrt{11}) \) \( 2^{2} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.329787359$ $6.585481807$ 1.964474842 \( 9344 a + \frac{115792}{3} \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 11 a - 27\) , \( 20 a - 60\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(11a-27\right){x}+20a-60$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.