Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 5000 over real quadratic fields with discriminant 497

Refine search


Results (36 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
72.1-a1 72.1-a \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.795372951$ 2.012152092 \( -\frac{1497379111186634}{43046721} a + \frac{4734706974798626}{43046721} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 262 a - 852\) , \( 4628 a - 14672\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(262a-852\right){x}+4628a-14672$
72.1-a2 72.1-a \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.181491805$ 2.012152092 \( -\frac{3004990072}{43046721} a + \frac{14707981316}{43046721} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -8 a + 28\) , \( -40 a + 122\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-8a+28\right){x}-40a+122$
72.1-a3 72.1-a \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $25.45193444$ 2.012152092 \( -\frac{176918528}{81} a + \frac{559937536}{81} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 48 a - 154\) , \( -278 a + 888\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(48a-154\right){x}-278a+888$
72.1-a4 72.1-a \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $12.72596722$ 2.012152092 \( \frac{7017920}{6561} a + \frac{51821648}{6561} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 2 a - 7\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(2a-7\right){x}$
72.1-a5 72.1-a \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.181491805$ 2.012152092 \( \frac{114749397880}{6561} a + \frac{362971739468}{6561} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 12 a - 62\) , \( 84 a - 300\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(12a-62\right){x}+84a-300$
72.1-a6 72.1-a \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.795372951$ 2.012152092 \( \frac{156744508474885994}{81} a + \frac{495669657504209806}{81} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -78 a - 152\) , \( -204 a - 2208\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-78a-152\right){x}-204a-2208$
72.1-b1 72.1-b \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.662222227$ $0.795372951$ 2.345275052 \( -\frac{1497379111186634}{43046721} a + \frac{4734706974798626}{43046721} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 1052 a - 3421\) , \( 32553 a - 103446\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(1052a-3421\right){x}+32553a-103446$
72.1-b2 72.1-b \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.582777778$ $3.181491805$ 2.345275052 \( -\frac{3004990072}{43046721} a + \frac{14707981316}{43046721} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -28 a + 99\) , \( -191 a + 586\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-28a+99\right){x}-191a+586$
72.1-b3 72.1-b \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) $1$ $\Z/8\Z$ $\mathrm{SU}(2)$ $0.582777778$ $25.45193444$ 2.345275052 \( -\frac{176918528}{81} a + \frac{559937536}{81} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 12 a - 36\) , \( -54 a + 171\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(12a-36\right){x}-54a+171$
72.1-b4 72.1-b \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1.165555556$ $12.72596722$ 2.345275052 \( \frac{7017920}{6561} a + \frac{51821648}{6561} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 12 a - 41\) , \( -51 a + 150\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(12a-41\right){x}-51a+150$
72.1-b5 72.1-b \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.331111113$ $3.181491805$ 2.345275052 \( \frac{114749397880}{6561} a + \frac{362971739468}{6561} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 52 a - 261\) , \( 361 a - 1630\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(52a-261\right){x}+361a-1630$
72.1-b6 72.1-b \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.662222227$ $0.795372951$ 2.345275052 \( \frac{156744508474885994}{81} a + \frac{495669657504209806}{81} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -308 a - 621\) , \( -1943 a - 20134\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-308a-621\right){x}-1943a-20134$
72.1-c1 72.1-c \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.795372951$ 2.012152092 \( -\frac{156744508474885994}{81} a + \frac{495669657504209806}{81} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( 78 a - 152\) , \( 204 a - 2208\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(78a-152\right){x}+204a-2208$
72.1-c2 72.1-c \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.181491805$ 2.012152092 \( \frac{3004990072}{43046721} a + \frac{14707981316}{43046721} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( 8 a + 28\) , \( 40 a + 122\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(8a+28\right){x}+40a+122$
72.1-c3 72.1-c \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $12.72596722$ 2.012152092 \( -\frac{7017920}{6561} a + \frac{51821648}{6561} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( -2 a - 7\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-2a-7\right){x}$
72.1-c4 72.1-c \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.181491805$ 2.012152092 \( -\frac{114749397880}{6561} a + \frac{362971739468}{6561} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( -12 a - 62\) , \( -84 a - 300\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-12a-62\right){x}-84a-300$
72.1-c5 72.1-c \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $25.45193444$ 2.012152092 \( \frac{176918528}{81} a + \frac{559937536}{81} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -48 a - 154\) , \( 278 a + 888\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-48a-154\right){x}+278a+888$
72.1-c6 72.1-c \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.795372951$ 2.012152092 \( \frac{1497379111186634}{43046721} a + \frac{4734706974798626}{43046721} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( -262 a - 852\) , \( -4628 a - 14672\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-262a-852\right){x}-4628a-14672$
72.1-d1 72.1-d \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.662222227$ $0.795372951$ 2.345275052 \( -\frac{156744508474885994}{81} a + \frac{495669657504209806}{81} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 308 a - 621\) , \( 1943 a - 20134\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(308a-621\right){x}+1943a-20134$
72.1-d2 72.1-d \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.582777778$ $3.181491805$ 2.345275052 \( \frac{3004990072}{43046721} a + \frac{14707981316}{43046721} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 28 a + 99\) , \( 191 a + 586\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(28a+99\right){x}+191a+586$
72.1-d3 72.1-d \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1.165555556$ $12.72596722$ 2.345275052 \( -\frac{7017920}{6561} a + \frac{51821648}{6561} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -12 a - 41\) , \( 51 a + 150\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-12a-41\right){x}+51a+150$
72.1-d4 72.1-d \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.331111113$ $3.181491805$ 2.345275052 \( -\frac{114749397880}{6561} a + \frac{362971739468}{6561} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -52 a - 261\) , \( -361 a - 1630\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-52a-261\right){x}-361a-1630$
72.1-d5 72.1-d \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) $1$ $\Z/8\Z$ $\mathrm{SU}(2)$ $0.582777778$ $25.45193444$ 2.345275052 \( \frac{176918528}{81} a + \frac{559937536}{81} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -12 a - 36\) , \( 54 a + 171\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-12a-36\right){x}+54a+171$
72.1-d6 72.1-d \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.662222227$ $0.795372951$ 2.345275052 \( \frac{1497379111186634}{43046721} a + \frac{4734706974798626}{43046721} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -1052 a - 3421\) , \( -32553 a - 103446\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-1052a-3421\right){x}-32553a-103446$
72.1-e1 72.1-e \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.325279868$ 2.941272233 \( \frac{207646}{6561} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( 6\) , \( -18\bigr] \) ${y}^2+a{x}{y}={x}^{3}+6{x}-18$
72.1-e2 72.1-e \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $18.60223895$ 2.941272233 \( \frac{2048}{3} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 3\) , \( 3\bigr] \) ${y}^2={x}^{3}+{x}^{2}+3{x}+3$
72.1-e3 72.1-e \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $37.20447790$ 2.941272233 \( \frac{35152}{9} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}$
72.1-e4 72.1-e \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $9.301119475$ 2.941272233 \( \frac{1556068}{81} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -4\) , \( -10\bigr] \) ${y}^2+a{x}{y}={x}^{3}-4{x}-10$
72.1-e5 72.1-e \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $37.20447790$ 2.941272233 \( \frac{28756228}{3} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -14\) , \( 12\bigr] \) ${y}^2+a{x}{y}={x}^{3}-14{x}+12$
72.1-e6 72.1-e \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.325279868$ 2.941272233 \( \frac{3065617154}{9} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -94\) , \( -442\bigr] \) ${y}^2+a{x}{y}={x}^{3}-94{x}-442$
72.1-f1 72.1-f \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.124911523$ $2.325279868$ 1.654335513 \( \frac{207646}{6561} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 16\) , \( -180\bigr] \) ${y}^2={x}^{3}-{x}^{2}+16{x}-180$
72.1-f2 72.1-f \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $2.249823046$ $18.60223895$ 1.654335513 \( \frac{2048}{3} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2={x}^{3}-{x}^{2}+{x}$
72.1-f3 72.1-f \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1.124911523$ $37.20447790$ 1.654335513 \( \frac{35152}{9} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -4\) , \( 4\bigr] \) ${y}^2={x}^{3}-{x}^{2}-4{x}+4$
72.1-f4 72.1-f \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.562455761$ $9.301119475$ 1.654335513 \( \frac{1556068}{81} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -24\) , \( -36\bigr] \) ${y}^2={x}^{3}-{x}^{2}-24{x}-36$
72.1-f5 72.1-f \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.562455761$ $37.20447790$ 1.654335513 \( \frac{28756228}{3} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -64\) , \( 220\bigr] \) ${y}^2={x}^{3}-{x}^{2}-64{x}+220$
72.1-f6 72.1-f \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.124911523$ $2.325279868$ 1.654335513 \( \frac{3065617154}{9} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -384\) , \( -2772\bigr] \) ${y}^2={x}^{3}-{x}^{2}-384{x}-2772$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.