Properties

Label 2.2.37.1-576.1-d4
Base field \(\Q(\sqrt{37}) \)
Conductor norm \( 576 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{37}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 9 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-9, -1, 1]))
 
gp: K = nfinit(Polrev([-9, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-9, -1, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-2a+11\right){x}+13a-49\)
sage: E = EllipticCurve([K([0,0]),K([1,1]),K([0,0]),K([11,-2]),K([-49,13])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([1,1]),Polrev([0,0]),Polrev([11,-2]),Polrev([-49,13])], K);
 
magma: E := EllipticCurve([K![0,0],K![1,1],K![0,0],K![11,-2],K![-49,13]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((24)\) = \((a-3)\cdot(a+2)\cdot(2)^{3}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 576 \) = \(3\cdot3\cdot4^{3}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1536a+5376)\) = \((a-3)\cdot(a+2)^{4}\cdot(2)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -15925248 \) = \(-3\cdot3^{4}\cdot4^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{6211264}{81} a + \frac{1755280}{9} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{26}{9} a + 11 : -\frac{332}{27} a + \frac{136}{3} : 1\right)$
Height \(2.5115897320317462513381773172791616872\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a + 1 : 0 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 2.5115897320317462513381773172791616872 \)
Period: \( 4.6597904306126497669113366515375125731 \)
Tamagawa product: \( 4 \)  =  \(1\cdot2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 3.8480811113869782208770452203653749446 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a-3)\) \(3\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((a+2)\) \(3\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\((2)\) \(4\) \(2\) \(I_{1}^{*}\) Additive \(1\) \(3\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 576.1-d consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.