Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 5000 over real quadratic fields with discriminant 497

Refine search


Results (20 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
64.7-a1 64.7-a \(\Q(\sqrt{33}) \) \( 2^{6} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $28.55411158$ 4.970632811 \( -373248 a - 884736 \) \( \bigl[0\) , \( 0\) , \( a + 1\) , \( -3 a - 7\) , \( 4 a + 9\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+\left(-3a-7\right){x}+4a+9$
64.7-b1 64.7-b \(\Q(\sqrt{33}) \) \( 2^{6} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.772306970$ $12.50248858$ 3.361703814 \( 512 a \) \( \bigl[0\) , \( a\) , \( a + 1\) , \( 46 a + 111\) , \( 59 a + 139\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(46a+111\right){x}+59a+139$
64.7-c1 64.7-c \(\Q(\sqrt{33}) \) \( 2^{6} \) 0 $\mathsf{trivial}$ $-3$ $N(\mathrm{U}(1))$ $1$ $12.51227705$ 2.178107860 \( 0 \) \( \bigl[0\) , \( a + 1\) , \( a + 1\) , \( a + 3\) , \( -1\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(a+3\right){x}-1$
64.7-c2 64.7-c \(\Q(\sqrt{33}) \) \( 2^{6} \) 0 $\mathsf{trivial}$ $-3$ $N(\mathrm{U}(1))$ $1$ $12.51227705$ 2.178107860 \( 0 \) \( \bigl[0\) , \( a + 1\) , \( a + 1\) , \( a + 3\) , \( -7335 a + 24734\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(a+3\right){x}-7335a+24734$
64.7-d1 64.7-d \(\Q(\sqrt{33}) \) \( 2^{6} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $19.04890146$ 1.657994057 \( -729 a + 2457 \) \( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( -3 a - 8\) , \( 149 a + 353\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-3a-8\right){x}+149a+353$
64.7-d2 64.7-d \(\Q(\sqrt{33}) \) \( 2^{6} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $38.09780292$ 1.657994057 \( -47877075 a + 161457003 \) \( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( a - 7\) , \( -2 a + 3\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-7\right){x}-2a+3$
64.7-d3 64.7-d \(\Q(\sqrt{33}) \) \( 2^{6} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $38.09780292$ 1.657994057 \( 10935 a + 43281 \) \( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( 78 a - 265\) , \( -593 a + 1999\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(78a-265\right){x}-593a+1999$
64.7-d4 64.7-d \(\Q(\sqrt{33}) \) \( 2^{6} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $19.04890146$ 1.657994057 \( 1097736219 a + 2604139173 \) \( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( -57 a + 190\) , \( -2485 a + 8379\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-57a+190\right){x}-2485a+8379$
64.7-e1 64.7-e \(\Q(\sqrt{33}) \) \( 2^{6} \) $1$ $\mathsf{trivial}$ $-99$ $N(\mathrm{U}(1))$ $0.255540541$ $18.02937231$ 1.604033535 \( -6548115718144 a - 15533972619264 \) \( \bigl[0\) , \( -1\) , \( a + 1\) , \( -706 a + 2381\) , \( -6626 a + 22340\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-706a+2381\right){x}-6626a+22340$
64.7-e2 64.7-e \(\Q(\sqrt{33}) \) \( 2^{6} \) $1$ $\mathsf{trivial}$ $-99$ $N(\mathrm{U}(1))$ $2.810945957$ $1.639033846$ 1.604033535 \( -6548115718144 a - 15533972619264 \) \( \bigl[0\) , \( -a + 1\) , \( a + 1\) , \( -61 a - 139\) , \( -386 a - 913\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-61a-139\right){x}-386a-913$
64.7-e3 64.7-e \(\Q(\sqrt{33}) \) \( 2^{6} \) $1$ $\mathsf{trivial}$ $-11$ $N(\mathrm{U}(1))$ $0.085180180$ $54.08811693$ 1.604033535 \( -32768 \) \( \bigl[0\) , \( -1\) , \( a + 1\) , \( 154 a - 519\) , \( -1861 a + 6271\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(154a-519\right){x}-1861a+6271$
64.7-e4 64.7-e \(\Q(\sqrt{33}) \) \( 2^{6} \) $1$ $\mathsf{trivial}$ $-11$ $N(\mathrm{U}(1))$ $0.936981985$ $4.917101539$ 1.604033535 \( -32768 \) \( \bigl[0\) , \( -a + 1\) , \( a + 1\) , \( -a + 1\) , \( -a - 2\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-a+1\right){x}-a-2$
64.7-e5 64.7-e \(\Q(\sqrt{33}) \) \( 2^{6} \) $1$ $\mathsf{trivial}$ $-99$ $N(\mathrm{U}(1))$ $0.255540541$ $18.02937231$ 1.604033535 \( 6548115718144 a - 22082088337408 \) \( \bigl[0\) , \( a\) , \( a + 1\) , \( 7167 a + 17004\) , \( 229955 a + 545517\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(7167a+17004\right){x}+229955a+545517$
64.7-e6 64.7-e \(\Q(\sqrt{33}) \) \( 2^{6} \) $1$ $\mathsf{trivial}$ $-99$ $N(\mathrm{U}(1))$ $2.810945957$ $1.639033846$ 1.604033535 \( 6548115718144 a - 22082088337408 \) \( \bigl[0\) , \( -a + 1\) , \( a + 1\) , \( 9 a - 9\) , \( 14 a - 81\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(9a-9\right){x}+14a-81$
64.7-f1 64.7-f \(\Q(\sqrt{33}) \) \( 2^{6} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $7.828642438$ 1.362791725 \( -373248 a - 884736 \) \( \bigl[0\) , \( 0\) , \( a + 1\) , \( -43 a + 145\) , \( -311 a + 1044\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+\left(-43a+145\right){x}-311a+1044$
64.7-g1 64.7-g \(\Q(\sqrt{33}) \) \( 2^{6} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $13.72025503$ 0.597097458 \( -729 a + 2457 \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 7 a - 16\) , \( -8 a + 31\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(7a-16\right){x}-8a+31$
64.7-g2 64.7-g \(\Q(\sqrt{33}) \) \( 2^{6} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $13.72025503$ 0.597097458 \( -47877075 a + 161457003 \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( -618 a - 1466\) , \( 4553 a + 10801\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-618a-1466\right){x}+4553a+10801$
64.7-g3 64.7-g \(\Q(\sqrt{33}) \) \( 2^{6} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $13.72025503$ 0.597097458 \( 10935 a + 43281 \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( -5 a - 12\) , \( -24 a - 57\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-5a-12\right){x}-24a-57$
64.7-g4 64.7-g \(\Q(\sqrt{33}) \) \( 2^{6} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.430063758$ 0.597097458 \( 1097736219 a + 2604139173 \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( -100 a - 237\) , \( -1101 a - 2612\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-100a-237\right){x}-1101a-2612$
64.7-h1 64.7-h \(\Q(\sqrt{33}) \) \( 2^{6} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.102899136$ $29.73410704$ 1.065220847 \( 512 a \) \( \bigl[0\) , \( -a + 1\) , \( a + 1\) , \( 2\) , \( -a - 2\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+2{x}-a-2$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.