Learn more

Refine search


Results (6 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
588.3-a1 588.3-a \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $4.075245702$ 2.128227658 \( \frac{1904464}{5103} a - \frac{7326080}{5103} \) \( \bigl[0\) , \( -a + 1\) , \( a + 1\) , \( 115 a - 386\) , \( 1638 a - 5529\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(115a-386\right){x}+1638a-5529$
588.3-b1 588.3-b \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.504756683$ $6.807860938$ 3.589112196 \( \frac{46657}{147} a + \frac{31741}{49} \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 3 a + 7\) , \( 5 a + 11\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(3a+7\right){x}+5a+11$
588.3-b2 588.3-b \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.009513367$ $13.61572187$ 3.589112196 \( -\frac{1152541}{21} a + \frac{3923189}{21} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 96 a - 319\) , \( 838 a - 2824\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(96a-319\right){x}+838a-2824$
588.3-c1 588.3-c \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.473663712$ $13.45052369$ 2.218106190 \( \frac{46657}{147} a + \frac{31741}{49} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 138 a - 473\) , \( -6203 a + 20914\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(138a-473\right){x}-6203a+20914$
588.3-c2 588.3-c \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.947327424$ $26.90104738$ 2.218106190 \( -\frac{1152541}{21} a + \frac{3923189}{21} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( -10 a - 20\) , \( -9 a - 20\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-10a-20\right){x}-9a-20$
588.3-d1 588.3-d \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $5.010563700$ 0.872227183 \( \frac{1904464}{5103} a - \frac{7326080}{5103} \) \( \bigl[0\) , \( a\) , \( a + 1\) , \( -23 a - 53\) , \( -369 a - 876\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-23a-53\right){x}-369a-876$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.